isbot. Teoremaning isboti quyidagi ma’lum tasdiqqa asoslangan: x> 1 da ex-1>x , shu bilan birga ex-1=x tenglik esa faqat x=1 da bajariladi. Bundan:
О a, A. a, 14 ^A a, fG(a)л"
1= e = exp \ -1| = Пexp^-:^ -1) >П
—
i
11A(a) j i—1 A(a) i—1A(a) vA(a) J
a
Demak, A(a) > G(a) va tenglik esa faqat —— — 1, i=1, 2,., n bo’lganda
A (a)
bajariladi. Bundan esa a1=a2 =... = an = A(a) ekanligi kelib chiqadi.
misol. x, y > 0 bo’lsa, x2 + y2 +1 > xy + x + y tengsizlikni isbotlang.
Yechilishi:2 2 2
2 1 ^ x x y y
x + y +1 > xy + x + y ^ — + — + — + — +
2 2 2 2
1 1 2 2 i
+ +— — x + y + 1
>
xy,
>
+ <
2 22 2 x y —+— 2 2
y2 1
2 2
x2 1
+ — > x.
2 2
x2 + y2 +1 > xy + x + y.
misol. x > 0 bo’lsa, 2^ + 2^ > 2* 2^ tengsizlikni isbotlang.
_L 1 1
Yechilishi. 2Tx + 2^ > 2 * 2^^ * 2fx — 2 * 2x12+4 — 2 * 2x6 — 2 * 2Tx.
Misollar:
Agar x, y > 0 bo’lsa, x1 + y4 + 8 > 8xy ni isbotlang.
x1, *^2 , x3, x4 , x5 0 bo’lsa quyidagini isbotlang:
( . . . \
x1 + x2 + x3 + x4 + x5 > x1 ( x2 + x3 + x4 + x5 ) .
x, y, z > 0 bo’lsa, x2 + y2 + z2 > xy + yz + xz ni isbotlang.
a b c
a, b, c > 0 bo’lsa, —I 1— > 3 ni isbotlang.
b c a
a, b, c > 0 bo’lsa, (a +1) (b +1) (c + a) (b + c) > 16abc ni isbotlang
.(H(a)) _1= ai + a2 + ••• + an > ^ 1a21...an1 = (G(a)) 1 tenglikga ega
n
bo’lamiz. Jumladan, H(a) = G(a) tenglik faqat aj=a2 = ... = anda bajariladi.
r\ 3 a + b + c .......
misol. Agar a, b, c > 0 bo lsa, —- - — < tengsizlikni
1/ a +1/ b +1/ c 3
isbotlang.
Yechilishi: 9 <(a + b + c)
a
> 9^abc = 9 3 abc
'1 1 1Л — + — + —
v a b c J
+ b + c > 3-Vabc,
1111 ^(a + b + c)
+ — + — > 3 • , . abc 3 abc
.23** 111
misol. Agar a, b, c > 0, ab c — 1 bo’lsa, — + + — > 6 ni isbotlang.
abc
1 2 3 1 1 1 1 1 1 r 1
Yechilishi: —\ \— — —\ \ \ \ \— > 6—. ~ — 6.
abc abbccc 6ab2c3
Misollar
x, y, z > 0 bo’lsa, u holda quyidagi tengsizlikni isbotlang:
.1.1.1 > 28л/3
(x \ y \ z )2 x 2 y2 z 2 9yj xyz (x \ y \ z )
Agar x1, x2,...,xn > 0 va x1 \x2 \...\ xn — 1 bo’lsa, u holda quyidagi tengsizlikni isbotlang:
x1 , x2 , , xn > 1
V
xn
x1 + x2 + ... + xn yji1 \ x1 )(x2 \ .. \ xn ) V(1 a x1 + ... +
x, y, z > 0 bo’lsa, u holda quyidagi tengsizlikni isbotlang:
x2 - xy y2 - yz z2 - xz л
- + -—— + > 0.
x + y y + z x + z
Agar a, b, c > 0 bo’lsa, u holda quyidagi tengsizlikni isbotlang:
a + Ll_+J^> 2.
b + c у a + c у a + b
Agar a, b, c, d > 0 bo’lsa, u holda quyidagi tengsizlikni isbotlang:
ap+2 + bp+2 + cp+2 > ap+2bc + bp+2ac + cp+2ab .
O’rta arifmetik va o’rta kvadratik qiymatlar orasidagi tengsizlik.
Teorema. K (a) >A(a) tengsizlik o’rinli ekanligini, jumladan,
K(a) = A(a) tenglik faqat a1=a2 =... = an holdagina o’rinli bo’lishini isbotlang.
Isboti: Koshi tengsizligidan foydalanib (1-masalaga qarang) foydalanib
2aiaj < a2 + a^, 1 < i < j < n tengsizlikni hosil qilamiz.
Demak,
(a1 + a2 +... + a) — a1+ a2 +... + a + 2 ^' aa.<
Do'stlaringiz bilan baham: |