Реферат на тему: Логарифм План: вещественный логарифм свойства Логарифмическая функция



Download 194,46 Kb.
bet4/7
Sana08.07.2022
Hajmi194,46 Kb.
#758624
TuriРеферат
1   2   3   4   5   6   7
Bog'liq
logarifm

2.3. Аналитическое продолжение

Рис. 3. Комплексный логарифм (мнимая часть)
Логарифм комплексного числа также может быть определён как аналитическое продолжение вещественного логарифма на всю комплексную плоскость. Пусть кривая Γ начинается в единице, не проходит через нуль и не пересекает отрицательную часть вещественной оси. Тогда главное значение логарифма в конечной точке w кривой Γ можно определить по формуле:

Если Γ — простая кривая (без самопересечений), то для чисел, лежащих на ней, логарифмические тождества можно применять без опасений, например

Если разрешить кривой Γ пересекать отрицательную часть вещественной оси, то первое такое пересечение переносит результат с ветви главного значения на соседнюю ветвь, а каждое следующее пересечение вызывает аналогичное смещение по ветвям логарифмической функции (см. рисунок).
Из формулы аналитического продолжения следует, что на любой ветви логарифма

Для любой окружности S, охватывающей точку 0:

Интеграл берётся в положительном направлении (против часовой стрелки). Это тождество лежит в основе теории вычетов.
Можно также определить аналитическое продолжение комплексного логарифма с помощью вышеприведенного ряда (1), обобщённого на случай комплексного аргумента. Однако из вида разложения следует, что в единице он равен нулю, то есть ряд относится только к главной ветви многозначной функции комплексного логарифма.

2.4. Риманова поверхность
Комплексная логарифмическая функция — пример римановой поверхности; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных в виде спирали. Эта поверхность односвязна; её единственный нуль (первого порядка) получается при z = 1, особые точки: z = 0 и  (точки разветвления бесконечного порядка).
Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0.


Download 194,46 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish