Приближенное вычисление интеграла



Download 128,06 Kb.
bet6/8
Sana18.05.2023
Hajmi128,06 Kb.
#940463
TuriЛитература
1   2   3   4   5   6   7   8
Bog'liq
referatmix 53083

Листинг 1.6. Функция gauss3 модуля integral
Function gaus3(F:real_fun; x0,x1:real; n:word):real;
var
t,sum,x,z,dx:real;
i,k:word;
gzero,gweight:array[1..3] of real;
procedure initialize_constants;
var
s,t:real;
j:word;
begin
gzero[1]:=-sqrt(0.6);
gzero[2]:=0.0;
gzero[3]:=sqrt(0.6);
gweight[1]:=5.0/9.0;
gweight[2]:=8.0/9.0
gweight[3]:=5.0/9.0;
for j:=1 to 3 do
begin
gzero[j]:=0.5*(1.0+gzero[j]);
gweight[j]:=0.5*gweight[j]);
end;
end; {initialize_constants}
begin {gauss3}
initialize_constants;
dx:=(x1-x0)/n;
x:=x0;
sum:=0.0;
for i:=0 to n-1 do
begin
t:=0.0;
for k:=1 to 3 do
begin
z:=x+dx*gzero[k];
t:=t+gweight[k]*F(z);
end;
sum:=sum+dx*t;
x:=x+dx;
end;
gauss3:=sum;
end;{gauss3}

Дадим некоторый обзор некоторых свойств полиномов Лежандра. Рекурсивное определение полиномов Лежандра приводилось ранее в этой работе. Они образуют ортогональное (но не ортонормированное)семейство на промежутке [-1,1], то есть


, mn,
.
Величина второго интеграла определяет нормировку для этих полиномов. Имеет место также следующее представление полиномов Лежандра:
.
Другая явная формула:
.
Приведем несколько первых полиномов Лежандра:
P0(x) = 1,
P1(x) = x,
,
,
,
.
Очевидно, что в общем случае полиномы Лежандра нечетной степени являются нечетными функциями, а четной степени – четными функциями.
Нам требуется найти нули полинома Pn(x). Важно здесь то, что эти нули являются простыми и принадлежат открытому интервалу (-1,1). Таким образом,
-1<x1<x2<…<xn<1, Pn(xj) = 0.
Соответствующая формула гаусовского интегрировании (с остатком) имеет следующий вид:
.
В этой формуле
,
Где -1 < <1.
Веса задаются несколькими эквивалентными формулами
.
Процедура compute_gauss_coeffs (листинг1.7). предназначена для вычисления нулей и весов квадратурной формулы Гаусса. Подпрограмма legendre_poly вычисляет значения Pn(x), Pn-1(x) и Pn’(x). Последнее получается дифференцированием основной рекуррентной формулы для Pn(x):
.
Нули находятся предварительным делением интервала и применением метода секущих, после чего следует ньютоновские итерации, в которых используются значения производных. Затем применяется первая формула для весов, в которой вновь используются значения производных. Здесь zero – массив нулей полинома Лежандра n-й степени, а weight – массив соответствующих весов.
Метод вычислений нулей полинома заключается в том, чтобы поделить интервал [0,1] на маленькие подынтервалы и проверить каждый из них на изменение знака полинома. Если изменение знака имеет место, то однократное применение метода секущих позволяет достаточно хорошо определить положение нуля. Для уточнения этого значения применяется метод Ньютона. Для обработки интервала [-1,0] учитывается симметрия.

Download 128,06 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish