Содержание
Введение 2
1. Различные методы вычисления определенных интегралов 3
1.1. Метод Симпсона для интегрирования функций F(x) по
заданному промежутку и его реализация на языке Pascal 4
1.2. Метод Симпсона для интегрирования функции от двух
переменных F(x,y) по прямоугольной двумерной области и его
реализация на языке Pascal 5
1.3. Метод Ромберга и его реализация на языке Pascal 7
1.4. Метод Гаусса и его реализация на языке Pascal 10
Заключение 16
Литература 17
Введение
Система программирования Турбо Паскаль представляет собой единство двух в известной степени самостоятельных начал: компилятора с языка программирования Паскаль (язык назван в честь выдающегося французского математика и философа Блеза Паскаля (1623-1662)) и некоторой инструментальной программной оболочки, способствующей повышению эффективности создания программ.
Паскаль – гибкий и развитый в отношении типов данных язык. Привлекательны его рекурсивные возможности, а также поддержка технологии объектно-ориентированного программирования.
Изучение программирования на языке Паскаль может дать хороший старт в огромный и увлекательный мир программирования. Обучение языку программирования проходит намного более эффективно с изучением примеров.
В данной работе рассмотрен пример использования языка программирования высокого уровня Pascal для вычисления определенных интегралов.
Различные методы вычисления определенных интегралов.
Приближенное вычисление интеграла,
I = ,
Основано на его замене конечной суммой:
In = k F(xk),
где wk – числовые коэффициенты, а xk – точки отрезка [x0,x1]. Приближенное равенство
I ≈ In называется квадратурной формулой, точки xk – узлами квадратурной формулы, а числа wk – коэффициентами квадратурной формулы. Разные методы приближенного интегрирования отличаются выбором узлов коэффициентов. От этого выбора зависит погрешность квадратурной формулы.
Rn = .
В модуле integral реализовано несколько методов численного интегрирования как для простых (одномерных), так и для кратных (многомерных) интегралов.
В функции simpson реализован стандартный метод Симпсона для интегрирования функции F(x) по заданному промежутку, когда число разбиений интервала выбирается заранее. Функция double_simpson является прямым обобщением метода Симпсона на случай интегрирования функции от двух переменных F(x,y) по прямоугольной двумерной области.
Функция adaptive_simpson служит для вычисления простых интегралов, она корректирует число и размер разбиений интервала, чтобы ошибка вычисления интеграла попала в заранее заданный интервал. Этот метод называется адаптивным интегрированием. Все современные программы интегрирования так или иначе адаптивны.
В функции romberg запрограммирован еще один метод адаптивного интегрирования – метод Ромберга, в настоящее время, вероятно, один из наиболее популярных. Имеются также функция gauss – одномерная версия метода интегрирования Гаусса. Интерфейсная секция модуля integral приведена в листинге 1.1.
Do'stlaringiz bilan baham: |