Предмет и задачи психофизиологии определение психофизиологии


Методы изучения работы головного мозга



Download 188,4 Kb.
bet4/7
Sana23.02.2022
Hajmi188,4 Kb.
#132939
1   2   3   4   5   6   7
Bog'liq
ПРЕДМЕТ И ЗАДАЧИ ПСИХОФИЗИОЛОГИИ

Методы изучения работы головного мозга


Центральное место в ряду методов психофизиологического исследования занимает регистрация электрической активности центральной нервной системы, и в первую очередь головного мозга.

Электроэнцефалография


Электроэнцефалография — метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности, отводимой как с поверхности черепа, так и из глубоких структур мозга. У человека последнее возможно лишь в клинических условиях. В 1929 г. австрийский психиатр X. Бергер обнаружил, что с поверхности черепа можно регистрировать мозговые волны. Он установил, что характеристики этих сигналов зависят от состояния испытуемого. Наиболее заметными были синхронные волны относительно большой амплитуды с характерной частотой около 10 циклов в секунду. Бергер назвал их альфа-волнами в отличие от высокочастотных бета-волн, которые проявляются в тех случаях, когда человек переходит в активное состояние. Это открытие привело к созданию метода электроэнцефалографии, состоящего в регистрации, анализе и интерпретации биотоков мозга животных и человека.
ЭЭГ отличает спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода (к концу 2-го месяца беременности) и прекращается только с наступлением смерти. Даже при коме и наркозе наблюдается особая характерная картина мозговых волн. На сегодняшний день ЭЭГ является наиболее перспективным, но пока еще наименее расшифрованным источником данных о функциональной организации мозга.
Условия регистрации и способы анализа ЭЭГ. В стационарный комплекс для регистрации ЭЭГ и ряда других физиологических показателей входят оборудованное место для испытуемого, моногока-нальные усилители, регистрирующая аппаратура. В настоящее время возможна тотальная регистрация ЭЭГ со всей поверхности скальпа. Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. В последнем случае необходимо специальное программное обеспечение.
По частоте в ЭЭГ различают следующие типы ритмических составляющих (рис. 2.1): дельта-ритм (0,5—4 Гц); тета-ритм (5—7 Гц); альфа-ритм (8—12/13 Гц) — основной ритм ЭЭГ, преобладающий в состоянии покоя; мю-ритм — по частотно-амплитудным характеристикам сходен с альфа-ритмом, но преобладает в передних отделах коры больших полушарий; бета-ритм (15—35 Гц); гамма-ритм (от 35 Гц и, по оценкам разных авторов, до 200 Гц, до 500 Гц и, возможно, выше). Описаны и более медленные ритмы электрических потенциалов головного мозга вплоть до периодов порядка нескольких часов и суток. Подобное деление ритмов ЭЭГ на группы достаточно произвольно и не опирается на теоретические представления.
Другая важная характеристика электрических потенциалов мозга — амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны между собой. Например, амплитуда высокочастотных бета-волн у одного и того человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн. При ручной обработке ЭЭГ используют такой показатель, как индекс выраженности ритма, например альфа-индекс, его определяют как долю выраженности альфа-ритма на определенном отрезке записи в процентах. Для определения альфа-индекса измеряют длину отрезков кривой, на которой регистрируется альфа-ритм, и число сантиметров, занимаемых в записи альфа-ритмом, выражают в процентах; на ЭЭГ различных людей альфа-индекс колеблется от 0 до 100. В норме он составляет 75-95%.
При записи ЭЭГ используют два метода: биполярный и монопо-лярный. В первом случае оба электрода помещаются в электрически активные точки скальпа, во втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, переносица). При биполярной записи ЭЭГ представляет собой результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений), при монополярной записи — активность какого-то одного отведения относительно нейтральной точки (например, лобного отведения относительно мочки уха). В исследованиях чаще используют монополярный вариант, так как он позволяет изучать изолированный вклад работы той или иной зоны мозга в изучаемый процесс.
Альфа-волна — одиночное двухфазное колебание разности потенциалов длительностью 75-125 мс, по форме приближается к синусоидальной
г / % У

  • 1 с

  • 50 мкВ

  • 1 с

Альфа-ритм — ритмическое колебание потенциалов с частотой 8-12/13 Гц, выражен чаще в задних отделах мозга при закрытых глазах в состоянии относительного покоя. Средняя амплитуда 30-40 мкВ, обычно модулирован в веретена
'/WVvWMAлл7MЛл^^
50 мкВ
Бета-волна — одиночное двухфазовое колебание потенциалов длительностью менее 75 мс и амплитудой 10-15 мкВ (не более 30 мкВ)
Бета-ритм — ритмическое колебание потенциалов с частотой 15-35 Гц. Лучше выражен в лобно-центральных областях мозга

  • 1 с

  • 50 мкВ

Дельта-волна — одиночное двухфазное колебание разности потенциалов длительностью не более 250 мс

Дельта-ритм — ритмическое колебание потенциалов с частотой 0,5-4 Гц и амплитудой 10-250 мкВ и более
Тета-волна — одиночное двухфазное колебание разности потенциалов длительностью 130-250 мс

  • 1 с

  • 50 мкВ

Тета-ритм — ритмические колебания потенциалов с частотой 5-7 Гц, чаще двусторонние синхронные, амплитудой 100-200 мкВ, иногда с веретенообразной модуляцией, особенно в лобной области мозга
Рис. 2.1. Основные ритмы и параметры электроэнцефалограммы
Международная федерация обществ электроэнцефалографии приняла так называемую систему «10-20», позволяющую точно указывать расположение электродов (рис. 2.2). В соответствии с этой системой у каждого испытуемого точно измеряют расстояние между серединой переносицы (назионом) и твердым костным бугорком на затылке (инионом), а также между левой и правой ушными ямками (А1 и А2). Возможные точки расположения электродов разделены
интервалами, составляющими 10 или 20% этих расстояний на черепе. При этом для удобства регистрации весь череп разбит на области, обозначенные буквами: Б — лобная, О — затылочная, Р — теменная, Т — височная, С — область центральной борозды. Нечетные номера мест отведения относятся к левому, а четные — к правому полушарию. Символом Сі обозначается отведение от верхушки черепа. Это место называется вертексом, и его используют особенно часто.

Рис. 2.2. Система «10-20»:
F — лобная область, С — центральная, Р — теменная,
Т — височная, О — затылочная.
Нечетные индексы — левая половина головы, четные индексы — правая, Z — средняя линия
(Jasper, 1958)
Клинический и статистический методы изучения ЭЭГ. Анализ ЭЭГ основывается на выделении характерных типов электрических потенциалов и определении локализации их источников в мозге. С момента возникновения выделились и продолжают существовать как относительно самостоятельные два подхода к анализу ЭЭГ: визуальный (клинический) и статистический. Как правило, визуальный анализ ЭЭГ используется в диагностических целях. Электрофизиолог, опираясь на определенные способы такого анализа ЭЭГ, решает следующие вопросы. Соответствует ли ЭЭГ общепринятым стандартам нормы, если нет, то какова степень отклонения от нормы, обнаруживаются ли у пациента признаки очагового поражения мозга и какова локализация очага поражения. Клинический анализ ЭЭГ всегда строго индивидуален и носит преимущественно качественный характер. Несмотря на то что существуют принятые в клинике приемы описания ЭЭГ, клиническая интерпретация ЭЭГ в большей степени зависит от опыта электрофизиолога, его умения читать электроэнцефалограмму, выделяя в ней скрытые и нередко очень вариативные патологические признаки.
Следует, однако, подчеркнуть, что в широкой клинической практике грубые макроочаговые нарушения или другие отчетливо выраженные формы патологии ЭЭГ встречаются редко. Чаще всего (70— 80% случаев) наблюдаются диффузные изменения биоэлектрической активности мозга с симптоматикой, трудно поддающейся формальному описанию. Между тем именно эта симптоматика может представлять особый интерес для анализа того контингента испытуемых, которые входят в группу так называемой малой психиатрии — состояний, граничащих между «хорошей» нормой и явной патологией. Именно по этой причине предпринимаются особые усилия по формализации анализа и ведутся разработки компьютерных программ для анализа клинической ЭЭГ (Зенков, 2004).
Статистические методы исследования электроэнцефалограммы исходят из того, что фоновая ЭЭГ стационарна и стабильна. Дальнейшая обработка в большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты. С помощью этой процедуры можно преобразовать волновой паттерн фоновой ЭЭГ в частотный, а затем установить распределение мощности по каждой частотной составляющей. С помощью преобразования Фурье самые сложные по форме колебания ЭЭГ можно свести к ряду синусоидальных волн с разными амплитудами и частотами. На этой основе выделяются новые показатели, расширяющие содержательную интерпретацию ритмической организации биоэлектрических процессов.
Например, специальную задачу составляет анализ вклада или относительной мощности разных частот, которая зависит от амплитуд синусоидальных составляющих. Она решается с помощью построения спектров мощности. Последний представляет собой совокупность всех значений мощности ритмических составляющих ЭЭГ, вычисляемых с определенным шагом дискретизации (в размере десятых долей герца). Спектры могут характеризовать абсолютную мощность каждой ритмической составляющей (рис. 2.3) или относительную, т.е. выраженность мощности каждой составляющей (в процентах) по отношению к общей мощности ЭЭГ в анализируемом отрезке записи. На рисунке хорошо видно, что максимальное значение спектральной мощности приходится на частоту альфа-ритма.

  • 100,0

  • 50,4 а



  • 0,0

  • 5,0 10,0 15,0 20,0 25,0 30,0 Гц

  • ? ? ? ? ? ......

Рис. 2.3. Индивидуальный спектр ЭЭГ в состоянии покоя.
По оси абцисс — частота, Гц; по оси ординат — спектральные плотности в логарифмической шкале (по Ьуккеп е! а1., 1974)
0,0
Спектры мощности ЭЭГ можно подвергать дальнейшей обработке, например корреляционному анализу, при этом вычисляют авто-и кросскорреляционные функции, а также когерентность. Последняя характеризует меру синхронности частотных диапазонов ЭЭГ в двух различных отведениях. Когерентность изменяется в диапазоне от +1 (полностью совпадающие формы волны) до 0 (абсолютно различные формы волн). Такая оценка проводится в каждой точке непрерывного частотного спектра или как средняя в пределах частотных поддиапазонов. При помощи вычисления когерентности можно определить характер внутри- и межполушарных отношений показателей ЭЭГ в покое и при разных видах деятельности. Высокая когерентность означает, что в двух точках регистрации электрических потенциалов имеет место совпадающая по частоте и константная по соотношению фаз активность.
Помимо показателей когерентности, в современных работах, направленных на изучение согласованной работы нейронных ансамблей, используются оценки фазовой синхронизации. Они отражают совпадение фаз волн в различных участках коры или привязку фаз к повторяющемуся стимулу. Соответственно различают пространственную фазовую и временную синхронизацию. Величина фазовой синхронизации обычно определяется как круговая дисперсия и подобно показателям когерентности может принимать значения от 0 (отсутствие синхронии) до 1. Синхронизацию осцилляторной активности в настоящее время считают основным средством коммуникации между нейронными сетями при выполнении различных когнитивных задач и связывают с колебаниями на гамма-частоте (30—80 Гц). Гамма-ритм вовлечен в осуществление таких важнейших психических процессов, как опознание стимулов, внимание, рабочая память (Данилова, 2006).
Источники генерации ЭЭГ. Парадоксально, но собственно импульсная активность нейронов не находит отражения в колебаниях электрического потенциала, регистрируемого с поверхности черепа человека. Причина в том, что импульсная активность нейронов несопоставима с ЭЭГ по временным параметрам. Длительность импульса (потенциала действия) нейрона составляет не более 2 мс. Временные параметры ритмических составляющих ЭЭГ исчисляются десятками и сотнями миллисекунд.
Принято считать, что в электрических процессах, регистрируемых с поверхности открытого мозга или скальпа, находит отражение синаптическая активность нейронов. Речь идет о потенциалах, которые возникают в постсинаптической мембране нейрона, принимающего импульс. Возбуждающие постсинаптические потенциалы имеют длительность более 30 мс, а тормозные постсинаптические потенциалы коры могут достигать 70 мс и более. Эти потенциалы (в отличие от потенциала действия нейрона, который возникает по принципу «все или ничего») имеют градуальный характер и могут суммироваться.
Несколько упрощая картину, можно сказать, что положительные колебания потенциала на поверхности коры связаны либо с возбуждающими постсинаптическими потенциалами в ее глубинных слоях, либо с тормозными постсинаптическими потенциалами в поверхностных слоях. Отрицательные колебания потенциала на поверхности коры предположительно отражают противоположное этому соотношение источников электрической активности.
Ритмический характер биоэлектрической активности коры и, в частности, альфа-ритма обусловлен в основном влиянием подкорковых структур, в первую очередь таламуса (промежуточный мозг). Нейроны неспецифического таламуса обладают свойством авторитмичности. Эти нейроны через возбуждающие и тормозные связи способны генерировать и поддерживать ритмическую активность в коре больших полушарий. Именно в таламусе находятся важные, но не единственные пейсмейкеры или водители ритма. Однако сравнение таламических и кортикальных вкладов в результирующем альфа-ритме с помощью модели теоретической таламической деаффе-рентации показало, что при устранении влияния таламуса отмечается выраженное снижение альфа-ритма во всех областях коры, однако его мощность все же остается значительной.
Отсюда следует, что генераторы альфа-активности присутствуют и в других структурах мозга, в таких как ствол, мозжечок, лимбическая система, сенсорная, ассоциативная и двигательная зоны коры. Так, отдельная система генерирует альфа-ритм в зрительной коре в результате активности нейронов, образующих равномерный дипольный слой на уровне IV и V корковых слоев, который соответствует соматическим и базальным дендритам пирамидных клеток этих двух слоев. Генерация зрительного альфа-ритма происходит в маленьких зонах коры, так называемых эпицентрах, из которых затем альфа-волны распространяются в различных направлениях путем корково-корковых связей (Lopes da Silva, 2010). Еще одна система генераторов находится в двигательной коре и образует 10-гер-цевый мю-ритм в центральных областях, который изменяется при двигательной активности, но не при открывании глаз. Однако, несмотря на функциональные отличия, все эти системы, очевидно, в силу общих свойств нейронов-генераторов работают на близких частотах около 10 Гц.
Большую роль в динамике электрической активности таламуса и коры играет ретикулярная формация ствола мозга. Она может оказывать как синхронизирующее влияние, т.е. способствовать генерации устойчивого ритмического паттерна, так и десинхронизирующее, нарушающее согласованную ритмическую активность.
Функциональное значение ЭЭГ и ее составляющих. Существенное значение имеет вопрос о функциональном значении отдельных составляющих ЭЭГ. Наибольшее внимание исследователей здесь всегда привлекал альфа-ритм — доминирующий ритм ЭЭГ покоя у человека.
Существует немало предположений, касающихся функциональной роли альфа-ритма. Основоположник кибернетики Н. Винер и вслед за ним ряд других исследователей считали, что этот ритм выполняет функцию временного сканирования (считывания) информации и тесно связан с механизмами восприятия и памяти. Предполагается, что альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию, и создающих оптимальный фон для процесса приема и переработки афферентных сигналов. Его роль состоит в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности реагирования, определяют его как ритм сенсорного покоя нейронных сетей зрительной системы. Предполагается также, что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра и таким образом регулирующих поток сенсорных импульсов.
В покое в ЭЭГ могут присутствовать и другие ритмические составляющие, но их значение лучше всего выясняется при изменении функциональных состояний организма (Данилова, 1992). Так, дельта-ритм у здорового взрослого человека в покое практически отсутствует, но он доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (дельта-сон). Напротив, тета-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют — «стресс-ритм» или «ритм напряжения» (Гусельников, 1976). У человека одним из ЭЭГ-симптомов эмоционального возбуждения служит усиление тета-ритма с частотой колебаний 4—7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тета-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач. По своему происхождению тета-ритм связан с кортиколимбическим взаимодействием. Предполагается, что усиление тета-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы.
Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значимое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальных заданий и тестов на зрительно-пространственные отношения оказывается положительно связанной с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям эта активность связана с отражением деятельности механизмов сканирования структуры стимула, которая осуществляется нейронными сетями, продуцирующими высокочастотную активность ЭЭГ.
Магнитоэнцефалография (МЭГ) — регистрация параметров магнитного поля организма человека и животных. При помощи магни-тоэнцефалографии можно регистрировать основные ритмы ЭЭГ и вызванные потенциалы. Запись этих параметров осуществляется с помощью сверхпроводящих квантовых интерференционных датчиков в специальной камере, изолирующей магнитные поля мозга от более сильных внешних полей. Метод обладает рядом преимуществ перед регистрацией традиционной ЭЭГ. Так, вследствие того что используется большое количество датчиков, легко получается пространственная картина распределения электромагнитных полей. Кроме того, поскольку запись магнитоэнцефалограммы происходит бесконтактно, различные составляющие магнитных полей, регистрируемые со скальпа, не претерпевают таких сильных искажений, как при записи ЭЭГ. Последнее позволяет более точно рассчитывать локализацию генераторов ЭЭГ-активности, расположенных в коре головного мозга.

ПСИХОФИЗИОЛОГИЯ ФУНКЦИОНАЛЬНЫХ СОСТОЯНИЙ И ЭМОЦИЙ


Download 188,4 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish