Předmět: Matematika



Download 84,26 Kb.
bet4/4
Sana22.04.2017
Hajmi84,26 Kb.
#7369
1   2   3   4

9. ročník


žák je v předmětu veden k

rozpracované výstupy v předmětu

učivo

možné evaluační nástroje

poznámky (možné formy a metody práce, průřezová témata, mezipředmětové vztahy...)







Lomený výraz







rozvoji svého abstraktního myšlení a k rozvoji důvěry ve vlastní schopnosti a možnosti při řešení úloh

využívání zásoby matematických nástrojů, početních operací, algoritmů a metod řešení úloh

uvědomění si své zodpovědnosti za výsledek své práce i za výsledek celé skupiny

vlastní sebekontrole, tzn. porovnává a hodnotí svůj pokrok v učení, případně definuje své problémy při učení a dokáže je sdělit učiteli

hodnocení a porovnávání svých výsledků v učení k vlastním cílům a možnostem


žák se seznamuje se složitějšími matematickými výrazy, upravuje je a zjednodušuje, čímž si zdokonaluje své dovednosti při algebraických výpočtech

žák dovede určit podmínky za kterých má daný výraz smysl a chápe význam stanovení podmínek řešitelnosti

žáci řeší úkoly a problémy kladoucí důraz na rozvoj logického myšlení a uvažování žáků


1.úroveň

zopakovat číselné výrazy

navázat na učivo 8. ročníku, proměnná, určit hodnotu výrazu v oboru celých čísel

rozlišit mnohočlen a lomený výraz

rozklad výrazů na součin (vytýkáním, užitím vzorců (a±b)2, (a2-b2)

smysl lomeného výrazu, podmínky řešitelnosti

krácení a rozšiřování lomených výrazů

sčítat a odčítat jednoduché lomené výrazy

násobení a dělení jednoduchých lomených výrazů

matematické hádanky, kvizy, rébusy, apod.



2.úroveň

určit hodnotu výrazu pro danou hodnotu proměnné v oboru racionálních čísel

rozklad výrazů na součin postupným vytýkáním příklady typu: ax+ay+2bx+2by,………podle vzorců: (2a-c)2-25

rozšiřovat lomené výrazy

hledat společný násobek výrazů (společný jmenovatel)

(x-y) 2, x2-y2, 6x2-6y2, apod.

násobit a dělit složitější lomené výrazy

příklady s užitím všech typů operací a všech typů závorek, ověřování správnosti výsledku dosazením do zadání a do výsledku s racionálními čísly

úprava výrazů se složenými zlomky


pozorování žáka - práce na tabuli , žáci v lavicích, při práci ve skupinách, při samostatné práci ap.

písemné práce – ověření, jak žák zvládl dovednost zjednodušit a upravit lomený výraz

počtářské chvilky – hodnocení toho, jak žák zvládá dílčí postupy při úpravách výrazů

analýza prací žáků – vytvořených při samostatné práci žáků, práci ve skupinách, domácích úkolech apod.

autoevaluace žáků - uvnitř skupiny (dvojice) -jak kdo pracoval, co se dařilo a nedařilo, na co se příště zaměřit

formy práce:

výuka bude probíhat v lavicích ve třídě (ve skupině žáků o přibližně stejné výkonnosti)

výuka bude probíhat v počítačové učebně s pomocí výukových programů

práce v domácím prostředí domácí úkoly



metody práce:

demonstrační ukázka na tabuli a vzorový zápis do sešitu

společné procvičování na tabuli

samostatná práce žáků

individuální procvičování ze sbírek úloh, pracovních sešitů (Nová škola)

vzájemné učení mezi žáky

skupinová práce

domácí úkoly










Rovnice s neznámou ve jmenovateli







využívání matematických poznatků a dovedností v praktických činnostech

využívání zásoby matematických nástrojů, početních operací, algoritmů a metod řešení úloh

kritickému úsudku a ke srozumitelné a věcné argumentaci při řešení zadaných úloh

k tomu, aby pro sebe vyvodil ponaučení pro další práci



žák aplikuje své poznatky o rovnicích tím, že matematizuje jednoduché reálné situace s využitím proměnné a funkčních vztahů

žák na základě analýzy úlohy provede rozbor a dovede rozhodnout, zda zvolit pro řešení známý algoritmus (v tomto případě rovnici) nebo řešit úlohu úsudkem

žák sám tvoří slovní úlohy tím, že matematizovaný problém převádí do reálné situace

žák posoudí, zda daný výsledek odpovídá reálné situaci



1. úroveň

řešení rovnice s neznámou ve jmenovateli bez hledání spole

ného jmenovatele typu: 5 = 20/x

matematické hádanky, kvizy, rébusy, apod.

lineární rovnice o dvou neznámých

řešení soustavy rovnic metodou dosazovací, sčítací a kombinovanou, počet řešení

jednoduché slovní úlohy na soustavy rovnic

2.úroveň

řešení složitějších rovnic s neznámou ve jmenovateli, počet řešení

řešení složitějších soustav rovnic s neznámou ve jmenovateli

náročnější slovní úlohy vedoucí k řešení soustavy lineárních rovnic s neznámou ve jmenovateli (slovní úlohy nazývané úlohy „na pohyb“, na společnou práci, „ na směsi“)



pozorování žáka - práce na tabuli , žáci v lavicích, při práci ve skupinách, při samostatné práci ap.

písemné práce – ověření, jak žák zvládl dovednost matematizovat reálnou situaci a pro výpočet využít algoritmus řešení rovnice o jedné, či o dvou neznámých , soustavy dvou rovnic o dvou neznámých

počtářské chvilky – hodnocení toho, jak žák zvládá dílčí postupy a algoritmy řešení rovnice s neznámou ve jmenovateli, se dvěma neznámými, soustavy dvou rovnic se dvěma neznámými

analýza prací žáků – vytvořených při samostatné práci žáků, práci ve skupinách, domácích úkolech apod.

formy práce:

výuka bude probíhat v lavicích ve třídě (ve skupině žáků o přibližně stejné výkonnosti)

výuka bude probíhat v počítačové učebně s pomocí výukových programů

práce v domácím prostředí domácí úkoly



metody práce:

demonstrační ukázka na tabuli a vzorový zápis do sešitu

společné procvičování na tabuli

samostatná práce žáků

individuální procvičování ze sbírek úloh, pracovních sešitů (Nová škola)

vzájemné učení mezi žáky

skupinová práce

domácí úkoly



průřezová témata:

osobnostní a sociální výchova (slovní úlohy)

finanční matematika (slovní úlohy)








Funkce







využívání matematických poznatků a dovedností v praktických činnostech

rozvíjení spolupráce při řešení problémových a aplikovaných úloh vyjadřujících situace z běžného života

uvědomění si své zodpovědnosti za výsledek své práce i za výsledek celé skupiny

rozvoji důvěry ve vlastní schopnosti a možnosti při řešení úloh

rozvoji svého abstraktního a exaktního myšlení

souvislému a logickému formulování svých myšlenek

využívání informačních prostředků pro své studium, pro práci ve škole i komunikaci s okolím

hodnocení a porovnávání svých výsledků v učení k vlastním cílům a možnostem



žák se orientuje v pravoúhlé soustavě souřadnic

žák analyzuje jednoduchý úkol z praxe a vytvoří tabulku, případně graf.

žák dovede zapsat a graficky znázornit závislost veličin a pracovat s konkrétní funkcí (přímá nepřímá úměrnost a lineární funkce)při řešení úloh z praxe.

žák vyhledává a vyhodnocuje data uvedená v tabulkách, grafech a naopak, zpracovává získané údaje formou grafů a tabulek.

žák na základě analýzy poznatků o funkcích matematizuje jednoduché reálné situace s využitím proměnné a funkčních vztahů

žák zdokonaluje svůj grafický projev



1.úroveň

funkce jako závislost veličin přímo z praxe, přímá úměrnost v praxi, závislost v tabulkách, pravoúhlá soustava souřadnic, graf přímé úměrnosti

lineární funkce, její rovnice, tabulka, sestrojení grafu v pravoúhlé soustavě souřadnic

funkce rostoucí a klesající

z jednoduchých grafů funkcí určovat údaje proměnné a závisle proměnné

užití grafu lineární funkce k řešení úloh z praxe

informativně - nepřímá úměrnost y=k/x a její graf, kvadratická funkce a její graf

úlohy na nepřímou úměrnost v praxi



2.úroveň

pojem funkce, definice funkce

definiční obor, hodnota funkce, jednotlivé body, intervaly otevřené, uzavřené

zobrazení, definiční obor na číselné ose

rozhodnout, zda číslo patří do definičního oboru dané funkce

určit definiční obor funkce z grafického znázornění

pro daný prvek definičního oboru určit hodnotu funkce

rozhodnout, zda dané body náleží grafu funkce

z daných bodů ležících na grafu funkce sestavit její rovnici

různé funkce v praxi, rozlišit lineární funkci od ostatních funkcí

lineární funkce – napsat rovnici funkce ze slovní úlohy z praxe z grafu lineární funkce sestavit rovnici lineární funkce čtvrt hodině, ... kdy se setkají atd.žák umí základní znaky dělitelnosti a používá je v praxi

funkce konstantní

lineární funkce v praxi, slovní úlohy řešit graficky

grafické řešení soustavy dvou lineárních rovnic, ověření výsledku výpočtem

úlohy o pohybu řešit graficky (grafikony jízdních řádů)


pozorování žáka - práce na tabuli , žáci v lavicích, při práci ve skupinách, při samostatné práci ap.

písemné práce – ověření, jak žák zvládl dovednost graficky znázornit závislost veličin a zpracovat získané údaje formou grafů a tabulek

počtářské chvilky – hodnocení toho, jak žák zvládá jednotlivé výstupy tzn. znázorňuje závislosti veličin, vytváří tabulky a grafy, matematizuje reálné situace a vyhodnocuje data z tabulek a grafů

projekt – Stavíme dům - hodnocení dovedností a kompetencí žáka využít matematických znalostí dovedností na konkrétním úkolu, spojeném s běžným životem.

Hodnocení následujících kompetencí v projektu:

-jak žák vyhledává a třídí informace, operuje s obecně užívanými termíny, uvádí věci do souvislostí, získané výsledky porovnává posuzuje a vyhodnocuje

- jak žák rozpozná a pochopí problém, vyhledá informace potřebné k řešení problému, volí vhodné postupy a způsoby řešení,činí rozhodnutí a je schopen je obhájit


formy práce:

výuka bude probíhat v lavicích ve třídě (buď žáci o různé výkonnosti nebo ve skupině žáků o přibližně stejné výkonnosti)

práce ve skupinách

výuka bude probíhat v počítačové učebně s pomocí výukových programů

práce v domácím prostředí domácí úkol

metody práce:

demonstrační ukázka – sestrojení bodů Oxy, sestavení tabulek, sestrojení grafu, grafické řešení soustavy rovnic

vzorový zápis do sešitu

společné procvičování na tabuli a v sešitech

samostatná práce žáků

individuální procvičování ze sbírek úloh, pracovních sešitů (Nová škola)

práce s milimetrovým papírem

skupinová práce:

1. hledání příkladů funkcí v praxi a matematizování reálné situace

2. užití matematického modelu na úlohy z praxe









Podobnost







využívání matematických poznatků a dovedností v praktických činnostech

řešení problémových a aplikovaných úloh vyjadřujících situace z běžného života

rozvoji důvěry ve vlastní schopnosti a možnosti při řešení úloh

zdokonalování svého grafického projevu

odhadu výsledků a vyhodnocení správnosti výsledku vzhledem k podmínkám úlohy

tomu, že při řešení matematického úkolu vyhledává potřebné informace, navrhuje, ověřuje a případně obhajuje své řešení

uvědomění si své zodpovědnosti za výsledek své práce i za výsledek celé skupiny (páru..)


žák provádí odhady výsledků při řešení úloh o podobnosti a posuzuje jejich reálnost (pozor zvětšenina k>0, zmenšenina k<0)

žák porovnává, odhaduje a určuje míry základních rovinných a prostorových útvarů

žák si zdokonaluje svůj grafický projev a přesnost při rýsování

žák aplikuje své poznatky o podobnosti trojúhelníků tím, že zjistí výšku různých předmětů (i více způsoby) a řeší další praktické úkoly

žák rozdělí graficky úsečku na daný počet dílů a v daném poměru


1.úroveň

určení podobných útvarů z praxe, fotografie – zvětšeniny (negativ, pozitiv), podobné obdélníky, podobné trojúhelníky, podobné útvary (lupa)

podobné útvary z praxe – stejný tvar

poměr podobnosti k, zvětšení, zmenšení, shodnost

praktické zmenšování a zvětšování rovinných obrazců v daném poměru, kde k je celé číslo (dvakrát, třikrát,…, větší, menší)

technické výkresy a plány, mapy

informativně věty o podobnosti trojúhelníků – sss, sus, uu

užití vět o podobnosti trojúhelníků ke zjišťování jejich podobnosti (sss,uu)

užití podobnosti ke konstrukci plánů, výpočtů délek cest podle map, zhotovování modelů

užití podobnosti k určení výšky stromu, komínu,…

dělení úsečky v daném poměru (kontrola výpočtem)

dělení úsečky na stejné díly – graficky, kontrola výpočtem



2.úroveň

znalost vět o podobnosti trojúhelníků – sss, sus, uu

dokázat, že trojúhelníky jsou podobné

rozhodnout o podobnosti trojúhelníků, určit poměr podobnosti geometrických útvarů

výpočet údajů pro sestrojení podobných útvarů

určit poměr podobnosti délek k, obsahů k2, objemů těles k3

topografické práce: určování délek cest apod. na nepřístupných místech terénu pomocí podobnosti

rýsování součástek jednoduchých technických výkresů a součástky umět okótovat



pozorování žáka - práce na tabuli , žáci v lavicích, při práci ve skupinách, při samostatné práci ap.

písemné práce – ověření, jak žák zvládl dovednost matematizovat reálnou situaci a pro výpočet využít znalostí a dovedností o podobnosti trojúhelníků

analýza prací žáků – vytvořených při samostatné práci žáků, práci ve skupinách, domácích úkolech apod.

projekt – Stavíme dům - pokračování

Hodnocení následujících kompetencí v projektu:

- jak žák vyjadřuje své myšlenky, naslouchá druhým a porozumí jim, využívá informační komunikační prostředky

- účinně spolupracuje s ostatními, přispívá k diskusi, využívá a oceňuje zkušenosti druhých, čerpá poučení z toho, co si druzí myslí, říkají a dělají, vytváří si pozitivní představu o sobě samém


formy práce:

výuka bude probíhat v lavicích ve třídě (ve skupině žáků o přibližně stejné výkonnosti)

výuka bude probíhat v počítačové učebně s pomocí výukových programů

práce v terénu – topografické práce



metody práce:

demonstrační ukázka na tabuli, řešení jednotlivých typů úloh

společné procvičování na tabuli a v sešitech

samostatná práce při rýsování a výpočtech (důležitost grafického projevu)

individuální procvičování ze sbírek úloh, pracovních sešitů (Nová škola)

skupinová práce žáků při topografických pracích

využití počítačových programů

soutěživost při vymýšlení úkolů z praxe

topografické práce

práce v terénu – výška stromu

projekt – Stavíme dům-pokračování








Goniometrické funkce







využívání matematických poznatků a dovedností v praktických činnostech

využívání zásoby matematických nástrojů, početních operací, algoritmů a metod řešení v oboru racionálních čísel

rozvoji důvěry ve vlastní schopnosti a možnosti při řešení úloh

rozvoji svého abstraktního a exaktního myšlení

kritickému úsudku a ke srozumitelné a věcné argumentaci při řešení zadaných úloh

hodnocení a porovnávání svých výsledků v učení k vlastním cílům a možnostem



žák aplikuje učivo o goniometrických funkcích při výpočtu stran a úhlů pravoúhlého trojúhelníka

žák využije učivo o goniometrických funkcích při řešení praktických úloh

žák využívá pro počítání s goniometrickými funkcemi tabulky případně kalkulačku

žák na základě analýzy poznatků o goniometrických funkcích matematizuje jednoduché reálné situace

žák analyzuje matematický úkol, určuje a porovnává míry jednoduchých rovinných a prostorových útvarů tím, že aplikuje své poznatky a dovednosti o goniometrických funkcích, případně provede syntézu poznatků a dovedností z dalšího učiva a řeší složitější úkoly


1.úroveň

goniometrické funkce jako poměry stran v pravoúhlém trojúhelníku

užití tabulek pro určování hodnot goniometrických funkcí pro ostré úhly a určování úhlu pro známou hodnotu funkce

vypočítat strany a úhly v pravoúhlém trojúhelníku pomocí funkce sinus, informativně kosinus a tangens

využít znalostí goniometrických funkcí při výpočtů jednoduchých příkladů z praxe

2.úroveň

odvození goniometrických funkcí ostrých úhlů jako poměr stran podobných trojúhelníků

definice funkcí sin, cos, tg, cotg

užití kalkulaček

výpočty v pravoúhlém trojúhelníku, úhly, strany

výpočty v obdélníku, čtverci, rovnoramenném trojúhelníku, rovnoběžníků, lichoběžníků

výškový a hloubkový úhel

využití goniometrických funkcí v praxi (stoupání vozovky, nájezd pro vozíčkáře, kam dosáhne jeřáb, délka lanové dráhy, příčný řez kanálem (průtok), výška stromu, pomníku, rozhledny….)

využití goniometrických funkcí při výpočtech objemů a povrchů těles

sestrojit grafy funkcí sin, cos, v intervalu 0°,90°

sestrojit graf funkcí sin, cos, v intervalu 0°, 180° , jednotková kružnice (sinusoida, kosinusoida)- souvislost s fyzikou


pozorování žáka - práce na tabuli , žáci v lavicích, při práci ve skupinách, při samostatné práci ap.

písemné práce – ověření, jak žák zvládl dovednost matematizovat reálnou situaci a pro výpočet využít znalostí a dovedností o goniometrických funkcích

analýza prací žáků – vytvořených při samostatné práci žáků, práci ve skupinách, domácích úkolech apod.

počtářské chvilky – hodnocení toho, jak žák zvládá dílčí úlohy při probírání učiva o goniometrických funkcích

projekt – Stavíme dům – pokračování – hodnocení kompetencí žáka v projektu viz. předcházející téma

formy práce:

výuka bude probíhat v lavicích ve třídě (ve skupině žáků o přibližně stejné výkonnosti)

výuka bude probíhat ve skupinách (dva i více žáků)

v domácím prostředí



metody práce:

demonstrační ukázka na tabuli pro všechny žáky se vzorovými postupy řešení a zápis do sešitu

společné procvičování pod dohledem učitele

samostatná práce doma i ve škole

individuální procvičování ze sbírek úloh,

skupinová práce na tvořivých úlohách z praxe

využití pracovních sešitů (Nová škola)

projekt – Stavíme dům



průřezová témata:

osobnostní a sociální výchova (slovní úlohy)

finanční matematika (slovní úlohy)

výchova demokratického občana (úkoly spojené se současnou praxí)










Jehlan, kužel, koule







využití matematické poznatků a dovedností v praktických činnostech

řešení problémových a aplikovaných úloh vyjadřujících situace z běžného života

rozvoji důvěry ve vlastní schopnosti a možnosti při řešení úloh

odhadu výsledku a vyhodnocení správnosti výsledku vzhledem k podmínkám úlohy

k tomu, aby pro sebe vyvodil ponaučení pro další práci


žák popíše tělesa, rozpozná je v reálném životě a správně je pojmenuje (stavebnictví, strojírenství,…)

žák použije pro výpočet objemu a povrchu tělesa správný vzorec, správně dosadí a provede výpočet

žák použije výpočet objemu a povrchu tělesa při řešení úloh z praxe


1.úroveň

jehlan, kužel a koule v praxi

seznámení se vzorci pro výpočty objemů a povrchů těchto těles

užití vzorců k jednoduchým výpočtům

náčrty (narýsování) těles ve volném rovnoběžném promítání a náčrty sítí

2.úroveň

vyvození „vzorců“ objemů a povrchů těchto těles

rýsování těles ve volném rovnoběžném promítání

sestrojení sítě těles z papíru, drátů, dřeva

řešení úloh z praxe na výpočty objemů a povrchů jehlanu, kužele i s užitím goniometrických funkcí

užití vzorců pro objem a povrch koule

objem komolého kužele a jehlanu, užití v praxi (informativně)

povrch komolého kužele a jehlanu, užití v praxi (informativně)



pozorování žáka - práce na tabuli , žáci v lavicích, při práci ve skupinách, při samostatné práci ap.

písemné práce – ověření, jak žák zvládl dovednost využít matematických vzorců ve výpočtech v reálných situacích a jak dokáže matematizovat reálnou situaci

analýza prací žáků – vytvořených při samostatné práci žáků, práci ve skupinách, domácích úkolech apod.

počtářské chvilky – hodnocení toho, jak žák zvládá dílčí úlohy při probírání učiva o tělesech

formy práce:

výuka bude probíhat v lavicích ve třídě (ve skupině žáků o přibližně stejné výkonnosti)

výuka bude probíhat ve skupinách (dva i více žáků)

v domácím prostředí (domácí úkoly)

práce v terénu –skupinová práce

metody práce:

demonstrační ukázka těles, náčrtů, rýsování

demonstrační ukázka řešení jednotlivých typů úloh

společné procvičování na příkladech z učebnice a sbírek

samostatná práce doma i ve škole

frontální práce – měření délek hran, výšek,…

využití pracovních sešitů (Nová škola)

průřezová témata:

osobnostní a sociální výchova (slovní úlohy)

finanční matematika (slovní úlohy)








Základy finanční matematiky







využívání matematických poznatků a dovedností pro řešení praktických úloh a problémů reálného života, zejména vzhledem k nakládání s finančními prostředky

hodnocení výsledků své práce ve skupině (páru..) případné diskusi o výsledcích skupinové práce



žák se dovede orientovat v peněžních účtech, peněžních vkladech, spoření, půjčkách apod.

žák aplikuje své znalosti tím, že vypočítá jednoduchý úrok z vkladu nebo z půjčky

žák si zdůvodní a posoudí základní parametry (výše úroků, úroveň a cena služeb) a na základě nich si vybere banku


1.úroveň

pojem úrok z praxe (banky, spořitelny)

pojem jistina, úroková doba, úrokovací období, úroková míra

různé typy vkladů

jednoduchý výpočet úroků za 1 rok, za 1 měsíc

2.úroveň

výpočet úroku z dané jistiny za určité období při dané úrokové míře

vypočítat úrok z úroku, daň z úroku

řešení konkrétních problémů z praxe rodičů

valuty, devizy, převody měn


pozorování žáka - práce na tabuli , žáci v lavicích, při práci ve skupinách, při samostatné práci ap.

analýza prací žáků – vytvořených při samostatné práci žáků, práci ve skupinách, domácích úkolech apod.

projekt – vypracuj projekt pro výběr vhodné banky

autoevaluace žáků - uvnitř skupiny (dvojice) -jak kdo pracoval, co se dařilo a nedařilo, na co se příště zaměřit

formy práce:

výuka bude probíhat v lavicích ve třídě (ve skupině žáků o přibližně stejné výkonnosti)

v počítačové učebně, práce s Internetem

v domácím prostředí (práce s denním tiskem)

práce v terénu – zjišťování údajů v bance, ve spořitelně, návštěva banky

metody práce:

demonstrační ukázka letáků různých bank

demonstrační ukázka výpočtů

společné procvičování na příkladech z učebnice a praxe

individuální práce

skupinová práce – vypracování různých projektů o bankách (výhody, nevýhody), různé typy vkladů

návštěva banky, spořitelny

hledání informací v novinách, časopisech









Základy rýsování (alternativní tematický celek)







zdokonalování svého grafického projevu

využívání poznatků při praktických činnostech (čtení výkresů, náčrt předmětu, jednoduchý model apod.)

hodnocení a porovnávání svých výsledků v učení k vlastním cílům a možnostem


žák dovede z technického výkresu vyčíst základní údaje

žák narýsuje nebo načrtne v pravoúhlém promítání i ve volném rovnoběžném promítání jednoduché těleso

žák dokáže jednoduché těleso či součástku okótovat


1.úroveň

druhy čar, procvičování různých čar a jejich použití

formáty papíru A0,..

technické písmo, šablony, počítače- programy

kótování

kóty ve strojírenství a stavebnictví

zobrazování a kótování plochých těles hranatých a zaoblených s kulatými a čtvercovými dírami

zobrazení kvádru a krychle ve volném rovnoběžném promítání

pravoúhlé promítání na 2 kolmé průmětny

sdružené průměty hranolu, kvádru, krychle a válce, v jednoduchých případech i umět okótovat

číst z technických výkresů

2.úroveň

číst jednoduchý technický výkres

sdružené průměty jehlanu, šestibokého hranolu

technické náměty ze strojírenství, využití sady modelů a těles ze skutečnosti – okótovat

seznámení se s rýsováním tradičním, ale i s využitím počítačových programů - vývoj rýsování


pozorování žáka - práce na tabuli , žáci v lavicích, při samostatné práci

analýza prací žáků – vytvořených při samostatné práci žáků, domácích úkolech, vypracování rysu, apod.

formy práce:

výuka bude probíhat v lavicích ve třídě

práce v terénu - dovede si obstarat v praxi nějakou jednoduchou součástku

metody práce:

demonstrační ukázka těles, technických výkresů, rýsování učitele na tabuli



samostatná práce při rýsování těles, součástek podle předlohy

Download 84,26 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish