Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  the three Interpretations for a network function



Download 5,69 Mb.
Pdf ko'rish
bet401/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   397   398   399   400   401   402   403   404   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

13.11.2 
the three Interpretations for a network function 
H
(
s
)
The first interpretation is the definition of a network function itself. That is, a network function is the 
ratio of Laplace transform of 
zero-state response
to the Laplace transform of input source function 
causing the response.
Two circuit variables are clearly identified in the definition of network function – they are the 
variable used to measure the zero-state response and the variable that was decided by the input source 
function. These two variables can be identified in the 
s
-domain equivalent circuit, and circuit analysis 
in 
s
-domain using nodal analysis or mesh analysis can be performed to arrive at the desired network 
function. The result will be 
H
(
s
) in the form of a ratio of rational polynomials in 
s
. Thus, from this 
point of view, we expect to get an 
H
(
s
) in the following format. We have chosen to make the coefficient 
of highest power in 
s
in the denominator 1.
H s
b
s
b
s
b s b
s
a
s
a s
m
m
m
m
o
n
n
n
( )
=
+
+ +
+
+
+ +
+

















1
1
1
1
1
1
aa
o

(13.11-1) 
The second interpretation for 
H
(
s
) comes from the meaning of Laplace transform. Laplace 
transform of a right-sided function is an expansion of that function in terms of functions of 
e
st
type 
with value of 
s
ranging from 
s
-
j

to 
s
+
j

. The value of 
s
is such that the expansion converges to the 
time-function at all 
t
. The components in expansion, 
i.e.,
signals of type 
e
st
are from 
-∞
to 

in time-
domain. Thus, Laplace transform converts a right-sided input into the sum of 
everlasting
complex 
exponential inputs. Therefore, the problem of zero-state response with a right-sided input is translated 
into that of forced response with everlasting complex exponential inputs. And, the ratio of Laplace 
transform of zero-state response to Laplace transform of input source function must then be the same 
as the ratio between forced response to input when input is 
e
st
(not 
e
st
×
u
(
t
)).
Forced response to an everlasting complex exponential input of 1
e
st
was seen to be a scaled version 
e
st
itself; the scaling factor being a complex number that depends on the complex frequency value 
s

(Refer Section 13.1) 
The time-domain circuit can be analysed using nodal analysis or mesh analysis to arrive at the
n
th
-
order differential equation relating the response variable (
y
) to excitation variable (
x
). The result will be


Network Functions and Pole-Zero Plots 
13.45
d y
dt
a
d
y
dt
a
dy
dt
a y
b
d x
dt
b
d
x
dt
n
n
n
n
n
m
m
m
m
m
m
+
+ +
+
=
+






1
1
1
1
0
1
1
1
++ +
+
b
dx
dt
b x
1
0
Then the scaling factor connecting an input of 1
e
st
to the output is 
b s
b
s
b s b
s
a s
a s a
m
m
m
m
o
n
n
n
o
+
+ +
+
+
+ +
+




1
1
1
1
1
1

Therefore,
H s
b s
b
s
b s b
s
a s
a s a
m
m
m
m
o
n
n
n
o
( )
=
+
+ +
+
+
+ +
+




1
1
1
1
1
1
(13.11-2) 
In this expression for 
H
(
s
), the coefficients come from the coefficients of differential equation 
governing the circuit. In the expression for 
H
(
s
) in Eqn. 13.11-1, the coefficients were the result of 
circuit analysis in 
s
-domain. We conclude that 
n


n, m


m
, all 
a

values are equal to corresponding 

values and all 
b

values are equal to corresponding 
b
values.
The third interpretation comes from the definition of network function itself. If the input source 
function is assumed to be 
d
(
t
), then 
H
(
s

becomes
a Laplace transform – it 
becomes 
the Laplace 
transform of impulse response. Thus, 
H
(
s
) is a 
ratio of Laplace transforms
and 
a
Laplace transform 
at the same time. It is a Laplace transform when we invert it in order to find the impulse response.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   397   398   399   400   401   402   403   404   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish