Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet399/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   395   396   397   398   399   400   401   402   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 13.10-6
A single Opamp, a resistor and a capacitor can form a good differentiator circuit. This circuit is shown 
in Fig. 13.10-16. (i) Derive the transfer function of the circuit and show that it is a differentiator. 
(ii) An ideal Opamp is too good to be true. A practical Opamp suffers from many non-idealities. 
The particular non-ideality that compromises the circuit performance will vary depending on circuit 
function. For example, we found that integrator circuit is severely compromised by offsets in a 
practical Opamp. We will see in this example that it is the limited gain and bandwidth of Opamp that 
compromises the performance of differentiator circuit.
An amplifier contains many capacitors – intentional as well as parasitic – in it and hence represents a
high-order dynamic circuit. However, some Opamps like IC 
741 can be modelled approximately as a single-time constant 
amplifier. That is, its gain function is of the form 
A
s
1
+
t
with 
A

250,000 and 
t

4 ms. Obtain the transfer function of 
differentiator circuit with 
R

10k
W
and 
C

1
m
F using IC 741 
and find its impulse response.
(iii) Suggest a method to modify the oscillatory impulse 
response to critically damped impulse response.
Fig. 13.10-16 
An Opamp 
differentiator 
circuit
C
+
+


v
S
(
t
)
+
R
v
o
(
t
)



13.42
Analysis of Dynamic Circuits by Laplace Transforms
Solution
(i) This is essentially an inverting amplifier structure. The transfer function 


= −
Impedance in feedback path
Impedance in input line
sRC
. It is a differentiator since multiplication by 
s
in 
s
-domain 
is equivalent to differentiation in time-domain according to time-differentiation theorem on Laplace 
transforms. It is an inverting differentiator.
(ii) The Opamp is to be modelled as a dependent 
source that senses the voltage transform between 
non-inverting pin and inverting pin and produces a 
voltage transform 
AV s
s
d
( )
1
+
t
at its output with respect 
to ground, where 
V
d
(
s
) is the transform of voltage 
of non-inverting pin with respect to inverting pin. 
The 
s
-domain equivalent circuit incorporating this 
model for Opamp is shown in Fig. 13.10-17.
Let the node voltage transform at the inverting pin be 
V
1
(
s
). Writing the node equation at inverting 
pin, we get
sC V s
V s
R
V s
AV s
s
[ ( )
( )]
( )
( )
1
1
1
1
1
0

+
− −
+









 =
t
Simplifying this equation results in 
V s
V s
sC
sC
R
A
s
1
1
1
1
( )
( )
=
+
+
+




t
V
o
(
s
) is 

+
A
s
V s
1
1
t
( )
.
Therefore, 
V s
V s
AsC
s
sC
R
A
s
sRC
A
RC
s
s
A
R
o
( )
( )
(
)
=

+
+
+
+




= −
+
+ +
1
1
1
1
1
1
2
t
t
t
t
C
C
t
The DC gain 
A
of any practical Opamp is in thousands and hence 
A



A
. Therefore,
V s
V s
sRC
A
RC
s
s
A
RC
o
( )
( )
(
)
= −
+
+
t
t
t
2
1
Note that the order of the circuit is two. The Opamp contributes one extra order to the circuit. 
Substituting 
R

10k
W

C

1
m
F, 
A

250000 and 
t

4ms, we get
V s
V s
s
s
s
s
s
o
( )
( )
(
.
)
(
.
)
(
= −
+
+
= −
+
0 01
79060
250
79060
0 01
79060
12
2
2
2
2
55
79057
62 5 10
125
79057
2
2
6
2
2
)
(
.
)
(
)
+
= −
×
+
+
s
s
Fig. 13.10-17 
Transformed equivalent 
circuit for differentiator 
circuit in Fig. 13.10-16 
C



+
+
+
+
R
V
1
(
s
)
V
0
(
s
)
V
d
(
s
)

V
(
s
) 1
sC
AV
d
(
s
)
1 + s
τ


Network Functions and Pole-Zero Plots 
13.43
Step response is the inverse of transfer function multiplied by 1/
s

(
.
)
(
)
(
.
)
(
)

×
+
+
=

×
+
+
62 5 10
1
125
79057
62 5 10
79057
79057
125
6
2
2
6
2
s
s
779057
2

≈ −
×

v t
e
t u t
o
t
( ) (
.
)
cos
( )
62 5 10
79057
6
125
V
Of course, if a unit step is really applied to this circuit, the output of Opamp will saturate. But what 
is to be noted is that the response is 
highly under-damped
. The oscillation is at 12.6 kHz and oscillation 
period is about 0.08 ms. But the time constant of damping exponential is 40 ms. It takes about 5 
time constants for an exponential transient to settle down. That implies that the 12.6 kHz transient 
oscillations will last for about 200 ms before they die down. That is a bad transient performance.
(iii) The solution is to add a little damping by means of a resistor in series with the input capacitor. 
This will make the differentiator imperfect however.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   395   396   397   398   399   400   401   402   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish