Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet362/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   358   359   360   361   362   363   364   365   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

x

1. Case (i) 
-
x
> 1. This is called the over-damped circuit. The roots of characteristic equation for 
such a circuit will be two distinct negative real numbers. Its zero-input response will consist of 
two decaying real exponential functions of time.
2. Case (ii) 
-
x
=
1. This is called the critically damped circuit. The roots of characteristic equation 
for such a circuit will a negative real number with multiplicity of two. In general, its zero-input 
response will consist of one decaying real exponential function and another function that is the 
product of time and this real exponential function.
3. Case (iii) 
-
0 < 
x
< 1. This is called the under-damped circuit. The roots of characteristic equation 
of such a circuit are complex conjugate numbers with negative real part. The zero-input response 
of such a circuit will contain an exponentially damped sinusoidal oscillation. The oscillations 
will not be periodic in the strict sense of periodicity. However, the zero crossings of oscillations 
will take place at regular intervals and periodicity is understood in this sense. Then the angular 
frequency will be given by 
w
x w
w
d
n
n
Q
=

=





1
1
1
2
2
2
rad/s. 
w
d
is called the damped 
natural frequency in circuit studies.
4. Case (iv) 
-
x
=
0. This is called the undamped circuit. The roots of characteristic equation are 
pure imaginary and conjugates. The zero-input response consists of steady sinusoidal oscillation 
at angular frequency of 
w
n
.
There is an unambiguous periodicity in the response in the case of an undamped circuit. The 
response in the case of an under-damped circuit is also periodic in the sense that there are oscillations 
and the number of oscillation cycles in a given interval will be correctly given by 
w
d
/2
p
 Hz. However, 
the time-functions will not be periodic in the mathematical sense.
The response in the over-damped and critically damped cases are not oscillations and the 
concept of frequency (if it is understood as the number of times something repeats in one second) 
is not relevant in those cases. However, linear system theorists decided to call the index of the 
exponential functions describing the zero-input response of a linear system as its natural frequencies 
long back. 
Thus, the roots of characteristic equation of a circuit are called its natural frequencies. We should 
not get confused here trying to count the number of oscillations in a decaying real exponential 
function. The word ‘frequency’ in the term natural frequency has absolutely nothing to do with the 
idea of repetitiveness. Those numbers give us the index of exponential functions that describe the 
natural source-free response of our circuit – nothing more or nothing less. The emphasis is on natural 
and not on frequency!


ImpulseResponseofSeries
RLC
Circuit

12.19
Since roots of characteristic equation of a circuit can be complex, natural frequencies also can be 
complex. Let s 
=
s
 
+
j
w
denote a natural frequency of a linear circuit. Then,
The natural frequency
s

=

s
 
+
 j
w
 stands for a complex exponential signal
e
st
 in time-
domain. This signal will represent one of the many components present in the zero-
inputresponseofthecircuitthathas
s
asoneofitsnaturalfrequencies.Thus,
natural 
frequency 
isastand-infor
e
st
.
However, e
st
=
e
s
t
(cos 
w
 t 
+
j sin 
w
 t ) is a complex function of time. A physical electrical circuit can 
not have a non-physical complex time function in its zero-input response. That is why, if 
s
 
+
j
w
is one 
of its natural frequencies, then, 
s
 
-
j
w
will also be one of its natural frequencies. Natural frequencies 
of a linear circuit, if complex, appear in conjugates. The complex exponential response components 
due to conjugate pairs will always add up to yield a real physical waveform.
We complete this section by listing the solution of Eqn. 12.4-1 for the under-damped case in both 
formats. They are
x t
e
x
x
t x
t
n
t
o
o
n
d
o
d
( )

sin
cos
=
+













+








xw
x
w
x
w
w
1
2






=
+













+

for
t
x t
e
x
Qx
Q
n
t
Q
o
o
n
0
2
4
1
0 5
2
( )

si
.
w
w
nn
cos
w
w
w
x w
d
o
d
d
n
t x
t
t
Q
+













=

=

+
for
where
0
1
4
1
2
2
22
Q
n
w

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   358   359   360   361   362   363   364   365   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish