Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet359/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   355   356   357   358   359   360   361   362   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 12.2-1 
A pure LC series circuit has L 
=
0.2 H, C 
=
10,000 
m
F, V
o
=
100 V and I
o
=
10 A. (i) Find the natural 
frequency of oscillation and its period. (ii) Predict the amplitude of voltage and current oscillations in 
the source-free response of the circuit employing energy-based arguments. (iii) Obtain v
C
(t) and i(t
in the circuit ?
Solution
Natural frequency of oscillation 
=
1
0 2 10 000 10
22 36
6
.
,
.
×
×
=
=

rad/s
3.56 Hz
Period of oscillations 
=
1
3 56
0 281
.
.
=
sec
Total initial stored energy 
=
0 2 10 10
2
10
100 100
2
60
2
.
× ×
+
×
×
=

J
The capacitor must hold this much energy when its voltage reaches positive or negative peak.
\
Amplitude of v
C
(t
=
60 2
10
109 54
2
×
=

. V. Similarly, the inductor must hold 60 J of energy when its 
current reaches positive or negative peak. 
\
Amplitude of i(t
=
2 60
0 2
24 5
×
=
.
. A.
\
v
C
(t
=
109.54 cos (22.36 t 
+
f
) V where 
f
is to be found out using initial conditions. Substituting 
initial condition for v
C
(t), 100 
=
109.54 cos (
f


f
=
±
0.42 rad. We use the initial condition for 
inductor to fix the sign of this phase angle.
i t
C
dv t
dt
t
C
( )
( )
.
.
sin( .
)
. sin(
=
= −
×
×
×
+ = −

10
109 54 22 36
22 36
24 5
2
2
f
22 36
.
)
t
+
f
A
Applying initial condition 

-
24.5 sin
f
=
10 

f
=
-
0.42 rad. Therefore,
v t
t
t
i t
C
( )
.
cos( .
. )
( )
. sin( .
=


= −
+
109 54
22 36
0 42
0
24 5
22 3
V for
66
0 42
0
t
t


+
. ) A for
Of course, we could have used Eqn. 12.2-3 directly to obtain the solution. But then, that will require 
committing that equation to memory. Moreover, committing too many equations to memory does not 
take an engineer very far in his professional career.
example: 12.2-2
Show that the ratio of amplitude of voltage oscillation to the amplitude of current oscillation in a LC 
circuit zero-input response will be L
.
Solution
Let V
o
and I
o
be the initial values for capacitor voltage and inductor current in the LC circuit. And let 
V
m
and I
m
be the amplitudes of voltage oscillation and current oscillation respectively.


TheSeriesLCCircuitwithSmallDamping–AnotherSpecialCase

12.13
Total initial stored energy
Maximum stored ener
=
+
LI
CV
o
o
2
2
2
2
ggy in the Capacitor
These two have to be equal.
=
CV
m
2
2


=
+
V
V
L
C
I
m
o
o
2
2
Similarly the maximum stored ener
e i
gy in th nnductor = 
This has to be equal to the total
LI
m
2
2
iinitial energy storage.

=
+
I
I
C
L
V
m
o
o
2
2
There is yet another way to arrive at I
m
.
i t
C
dv t
dt
C
C
n
( )
( )
=

=
×
Amplitude of current oscillation
amplit
w
uude of current oscillation

= ×
×
+
×
+
I
C
LC
V
L
C
I
I
C
L
V
m
o
o
o
o
1
2
2
2
2
Both approaches lead to the final conclusion that 
V
I
L
C
m
m
=
. The reader may verify that this ratio has 
dimension of resistance. This resistance is at times referred to as the characteristic resistance of LC circuit. 
We observe that the amplitude of oscillation in a LC circuit depends only on the magnitude of 
initial conditions and not on their polarity. This is indeed expected since stored energy is a square 
function of initial conditions. The polarity of initial conditions decides the phase angle of oscillations. 
Absence of any dissipation mechanism dooms a pure LC circuit with non-zero energy storage to 
oscillate forever. But suppose there is a little resistance in series – so little that there is no marked change 
in the shape of v
C
(t) and i(t) in the first cycle. However, in that case, the current which flows through the 
resistance must dissipate some energy cycle after cycle (however minute that may be) leading to reduction 
of total available stored energy in the circuit. Moreover, that must surely lead to gradual loss of amplitude 
of voltage and current oscillation. Sometime or other circuit must settle down to a zero-energy state.
Therefore, we throw in a little damping in a LC circuit in the next section.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   355   356   357   358   359   360   361   362   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish