Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  Lc circuit as an Averaging Filter



Download 5,69 Mb.
Pdf ko'rish
bet370/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   366   367   368   369   370   371   372   373   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

12.10.6 
Lc circuit as an Averaging Filter
Let us see how the low-pass filter in Example 12.10-1 has achieved this extent of attenuation of AC 
component. We noted that the resonant frequency of the circuit is about 0.98 kHz. Thus, the ratio 
between the lowest frequency present in the input, i.e., 10 kHz, and the resonant frequency of the 
circuit is about 10. We now show that the gain of a LC low-pass filter for a sinusoidal input at f Hz is 

f
n
/)
2
, where f

is the resonant frequency in Hz unit and f >> f
n
. We show it in two ways.
Refer to Eqn. 12.9-3 that gives the frequency-response function for capacitor voltage in a standard 
series RLC circuit. It is reproduced in the following.
V
j
V j
C
S
n
n
n
C
C
n
n
(
)
(
)
(
)
tan
w
w
w
w
w
x w w
f
f
xw w
w
=

+

= −

2
2
2 2
2
2
2
1
4
2
where
22
2

w
rad
V
j
V j
x
x
x
C
S
n
n
n
(
)
(
)
(
)
(
)
w
w
w
w
w
x w w
x
w
=

+
=

+
=
2
2
2 2
2
2
2
2 2
2 2
4
1
1
4
where 
w
w
x
w
w
n
n
n
f
f
x
x
x
x
f
f
=


+


=
= 



=




1
4
1
1
2 2
2 2
2 2
2
2
2
(
)
(
)
n
for
x
>>
1
Fig. 12.10-10 

Theripplecomponent
ofoutputvoltagein
Example:12.10-1
0.1
Volts
Time in ms
–0.1
0.05 0.1 0.15 0.2 0.25


12.40


SeriesandParallel
RLC
Circuits
The second way to appreciate the second-order gain characteristic of LC low-pass filter is by 
considering the following qualitative argument based on phasor impedances. The purpose of the 
averaging filter is to eliminate AC components in the output. Some intervening element has to absorb 
the AC component in the input if it is not to appear at output. An element which can take large 
AC voltage across it while keeping current low is inductance (since its impedance increases with 
frequency) and a capacitor across the output will shunt out whatever AC current that tries to get 
into the load resistance (because capacitor has low impedance at high frequency). Thus, the inductor 
chokes the high frequency current while absorbing almost all the input AC voltage content and the 
capacitor located across the output absorbs whatever AC current that appears even after the inductor 
chokes it. This is how a LC filter does averaging. There is a two-fold action – a series element 
that makes it more and more difficult for AC current to flow as frequency increases and a shunt 
element which makes it more and more difficult for AC voltage to develop across it as frequency 
increases. This explains the inverse square dependence of gain on frequency at high frequency
values.
At a sufficiently high frequency, any resistance or inductor that is connected in parallel with a 
capacitor may be ignored for approximate calculation. Similarly, at a sufficiently high frequency 
any resistance or current connected in series with an inductor may be ignored for approximate 
calculations. For example, see the phasor equivalent of circuit in this example at 10 kHz in
Fig. 12.10-11 (a).
(a)

v
o
(
j
)
ω
0.1 



j
5.026 

–j
0.0482 

+
(b)
j L
ω
j C
ω
1
Fig. 12.10-11 
PhasorequivalentcircuitsforExample:12.10-1
Obviously, that 2 
W
and 0.1 
W
can be safely ignored. Therefore, the circuit can 
be approximated by the circuit in (b) for high frequencies. Then the gain function is 
=
+
=

=

≈ 



=




>
1
1
1
1
1
1
2
2
2
2
2
j C
j L
j C
LC
f
f
f
n
n
n
w
w
w
w
w w
w
w
/
for
>>
f
n
. Current in the circuit 
(b) lags voltage by 90
°
at high frequency because the net reactance is inductive at 
w
 
w
n
. And the 
capacitance voltage lags behind circuit current by 90
°
. Therefore, the output voltage will be 180
°
out 
of phase with respect to input at high frequencies.
We could have used this approximate gain expression to solve this example. The gain at 10 kHz 
will be 
=
(0.98/10)

=
0.0096, at 30 kHz 
=
(0.98/30)
2
=
0.00106 etc. Phase of output will be 180
°
at all 
these frequencies.
Note that a LC filter will offer superior performance in averaging applications compared to RC 
circuit. This is due to the fact that the gain of an RC averaging circuit falls off in inverse proportion 
to 
w
for large values of 
w
(large compared to 1/
t
), whereas the gain of an LC filter falls in inverse 
proportion to 
w
2
for large values of 
w
(large compared to 
w
n
). Moreover, averaging by an LC filter is 
more efficient since an inductor does not dissipate power. Hence averaging at high power levels (few 
10

s of watts and up) is usually done by LC filters. RC averaging is commonly used in low-power 
signal processing applications.


ResonanceinSeries
RLC
Circuit

12.41

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   366   367   368   369   370   371   372   373   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish