Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  the use of frequency response



Download 5,69 Mb.
Pdf ko'rish
bet347/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   343   344   345   346   347   348   349   350   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

11.5.1 
the use of frequency response
Frequency response information helps us to find 
the steady-state output when the input is a mixture 
of sinusoids of different frequencies. A sinusoid 
with a particular angular frequency is a periodic 
waveform. But a sum of many sinusoids with 
arbitrary frequencies need not be periodic. A special 
case is where the sinusoids in the additive mixture 
are of frequencies which are related harmonically -i.e., when all the frequencies are integer multiples 
of some basic frequency value. This is an important practical case.
We have seen in Chapter 9 that a periodic non-sinusoidal waveform can be expanded as a sum of a 
DC component (which may be zero as a special case) and infinitely many sinusoids (may be finite as 
a special case) with harmonically related frequencies. Therefore, the periodic steady-state solution in 
a circuit excited by a non-sinusoidal periodic input can be obtained by using the Fourier Series of the 
waveform along with the frequency response data for the circuit. That makes frequency response an 
extremely important mathematical description of a linear circuit.
Fig. 11.5-2 

Frequencyresponseplots
forseries
RC
circuit
1
Gain
Phase
(rad)
(0.707)
2
2
3
(–45°)
4
4
ωτ
π
1

1
–1
2
π


FrequencyResponseofFirstOrder
RC
Circuits

11.19
Before we proceed to employ frequency response to solve circuits excited by sum of sinusoids, let 
us settle an issue regarding superposition principle. We know that zero-state responses due to multiple 
sources acting simultaneously can be obtained by superposition. But does it work for steady-state 
response component too?
Zero-state response contains two components – the transient response part and the steady-state 
response part. The transient response components, whether from zero-state response or zero-input 
response, will vanish with time if the circuit is passive and stable. Therefore, superposition principle 
can be applied on steady-state response components. 
Now, if the input contains many sinusoids with different frequencies, the steady-state response 
component due to each sinusoid may be obtained from frequency response plots and these components 
may be added up to obtain the complete steady-state response. This procedure is illustrated in the case 
of a Series RC Circuit with a time constant of 1 s and with an input of v
S
(t
=
(sin t 
+
0.33 sin 3t 
+
0.2 
sin 5tu(t) V. The output is taken across the capacitor.
Consider the first sinusoid that has an angular frequency of 1 rad/s. The gain of the circuit at this 
frequency is 0.707 and the phase delay is 45
°
(0.79 rad) (either from Eqn. 11.5-1 or from Fig. 11.5-2 
with 
t
=
1 s). Therefore, the steady-state component due to this sinusoid is 0.707 sin(t – 0.79) V. 
The sond sinusoid of 0.33 sin3t with an angular frequency of 3 rad/s meets with a gain of 0.3162 
and phase delay of 71.57
°
(1.25 rad). Therefore the steady-state component due to this sinusoid is 
0.104 sin(3t – 1.25) V. Similarly, the third sinusoid of 0.2 sin 5t with an angular frequency of 5 rad/s 
meets with a gain of 0.1961 and phase delay of 78.7
°
(1.37 rad). Therefore, the steady-state component 
due to this sinusoid is 0.04 sin(5t – 1.37) V. Therefore

v
o
(t
=
0.707 sin(t – 0.79) 
+
0.104 sin(3t – 1.25) 
+
0.04 sin(5t – 1.37) V. The input and output waveforms are shown in Fig. 11.5-3.
1
0.5
11
12
13
14
15
16
17
Time (s)
Output voltage
Applied voltage
18
19
–0.5
–1
Fig. 11.5-3 
Steady-stateresponseofseries
RC
circuitformixedsinusoidalinput

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   343   344   345   346   347   348   349   350   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish