Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet288/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   284   285   286   287   288   289   290   291   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

I
f
I
c
I
V
s
+
+
320

0
V
s
+
j
0.0942

j
13.9

j
6.78
320

0
110

0
I
s
v
o
v
o
v
o
I
f
I
c
I
V
s
+
+
j
0.0942

j
13.9

j
6.78
110

0
I
s
I
f
I
c
I
+
j
0.0942

j
13.9

j
6.78
I
s
V
o
I
f
(c)
[Impedance values are in 

]
(a)
(d)
(b)
I
c
+
Fig. 9.9-5 
(a) and (b) Phasor equivalent circuit (c) and (d) Circuits 
for applying superposition principle
Solution for (d)
Total effective admittance 
= -
j10.4 S
Total effective impedance 

j0.096
\
Vo 
= -
110


×
j0.096
= -
10.6 

90
°
V
I
S

10.6

90
°
÷
j0.094 

112.8 

0
°
A


Analysis of Periodic Steady-State Using Fourier Series 
9.35
I
C

10.6

90
°
÷
(
-
j6.78) 

1.54

180
°
A
I
f

10.6

90
°
÷
(
-
j13.9) 

0.74

180
°
A
Solution for (c) 

(d)
V
O

327


-
10.6 

90
°


327.2
∠-
1.9
°
V
I
S
 

71.7 

90
°

112.8 

0
°
A

133.66

32.4
°
A
I
f

23.5

90
°

0.74

180
°
A

23.5

91.8
°
A
I
c

48.2

90
°

1.54

180
°
A

48.2

91.8
°
A
Time-domain solution
v
o
(t

327.2 sin(314
-
1.9
°
)V
i
S
(t

133.7 sin(314

32.4
°
) A
i
f
(t

23.5 sin(314

91.8
°
) A
i
C
(t

48.2 sin(314

91.8
°
) A
The equivalent circuits for solving the harmonic currents are shown in Fig. 9.9-6. Only the first four 
non-zero harmonics in load current are considered.
The circuits can be solved by current division principle – current divides among parallel elements 
in proportion to their admittance values. Solution is illustrated in the case of n 

11.
V
O

10


÷
(j1.63
-
j0.2
-
j0.96)

21.3
∠-
90
°
V
I
S

10


×
-
j0.96 
÷
(j1.63
-
j0.2
-
j0.96) 
= -
20.4

0
°
A
I
f

10


×
-
j0.2 
÷
(j1.63
-
j0.2
-
j0.96) 
= -
4.26

0
°
A
I
C

10


×
j1.63 
÷
(j1.63
-
j0.2
-
j0.96) 

34.7

0
°
A
Observe that the load current had only 10 A at 550 Hz (11th harmonic). However, the source 
current has 21.3 A and the power factor correction capacitor C
p
has 34.7 A in it. If C
p
were not there, 
the source current would have been close to 10 A only and the 11th harmonic component in voltage 
would have been close to 10 V instead of its present value of 21.3 V. This amplification of 11th 
harmonic illustrates a potential problem that can exist in harmonic context in power systems. The 
admittance of source inductance and the power factor capacitor cancel each other partially at 11th 
harmonic and this results in an increase in the impedance level presented to 11th harmonic. Higher 
impedance results in higher voltage and higher currents in individual parallel paths. There can be 
dangerous harmonic resonance if the parallel resonant frequency of the circuit coincides or comes 
near one of the harmonics of supply frequency. In this case, the resonant frequency is around 424 Hz 
(decided practically by the 0.3 mH inductor and 0.47 mF capacitor) and there can be large harmonic 
amplification if the load current contains 8th of 9th harmonics.


9.36
Dynamic Circuits with Periodic Inputs – Analysis by Fourier Series
j
0.47 (–
j
2.13)
(
j
0.74)
j
2.9
(13.9)
0.072

j
2.9

j
1.36
0.072
–22

0
I
s
I
f
I
c
I
+
[Impedance values are in 

. Admittance values (in brackets) are in siemens.]
(a)
n
= 5
j
0.66 (–
j
1.52)
(
j
1.04)
j
4.05
(–
j
0.5)
i
2
approximately

j
2.9

j
0.96
0.072
–15.7

0
I
s
v
o
v
o
v
o
v
o
I
f
I
c
I
+
(b)
n
= 7
j
1.226(–
j
0.82)
(
j
1.94)
j
7.52
(
–j
0.156)
j
6.41
approximately

j
1.11

j
0.516
0.072
8.5

0
I
s
I
f
I
c
I
+
(d)
n
= 13
j
1.037(–
j
0.96)
(
j
1.63)
j
6.364
(–
j
0.2)
j
5.05
approximately

j
1.37

j
0.61
0.072
10

0
I
s
I
f
I
c
I
+
(c)
n
= 11
Fig. 9.9-6 
Circuit equivalents for current harmonics
The time-domain solution is obtained by using 
w

11 
× 
314 rad/s.
v
o
(t

21.3 sin (11 
× 
314
-
90
°
) V
i
S
(t
= -
20.4 sin (11 
× 
314t) A
i
f
(t
= -
4.26 sin (11 
× 
314t) A
i
C
(t

34.7 sin (11 
× 
314t) A
The equivalent circuits for other harmonics also can be solved similarly.
The time-domain solution for n 

5 is given in the following. Note that the tuned circuit diverts 
most of the 22 A fifth harmonic into it. The source current still contains fifth harmonic and this is due 
to the fact that the filter path has a resistance of 0.072 
W
.
v
o
(t
= -
1.58 sin(5 
× 
314t

5.7
°
) V
i
S
(t
= -
3.35 sin(5 
× 
314

84.3
°
) A
i
f
(t
= -
21.9 sin(5 
× 
314t

5.7
°
) A
i
C
(t
= -
1.17 sin(5 
× 
314t

95.7
°
) A
The time-domain solution for n 

7 is given in the following:
v
o
(t
= -
16.1 sin(7 
× 
314t

90
°
) V
i
S
(t
= -
24.4 sin(7 
× 
314t) A
i
f
(t
= -
8.05 sin(7 
× 
314t) A
i
C
(t

16.7 sin(7 
× 
314t) A


Analysis of Periodic Steady-State Using Fourier Series 
9.37
The time-domain solution for n 

13 is given in the following:
v
o
(t

8.8 sin(13
×
314
-
90
°
) V
i
S
(t
= -
7.2 sin(13
×
314t) A
i
f
(t
= -
1.38 sin(13
×
314t) A
i
C
(t

17 sin(13
×
314t) A
The total solution is obtained by combining all these solutions. We neglect the harmonics above 
13th in this example.
v
o
(t
=
327sin(
w
o
t
-
1.9
°

-
1.6sin(5
w
o
t

5.7
°

-
16.1sin(7
w
o
t

90
°


21.3sin(11
w
o
t
-
90
°


8.8sin(13
w
o
t
-
90
°
) V
i
S
(t
=
133.7 sin(
w
o


32.4
°

-
3.35 sin(5
w
o
t 
-
84.3
°

-
24.4 sin(7
w
o
t
-
20.4 sin(11
w
o
t
-
7.2 sin(13
w
o
t) A
i
f
(t
=
23.5 sin(
w
o


91.8
°

-
21.9 sin(5
w
o


5.7
°

-
8.05 sin(7
w
o
t) 
-
4.26 sin(11
w
o
t
-
1.38 sin(13
w
o
t) A
i
C
(t
=
48.2 sin(
w
o


91.8
°

-
1.17 sin(5
w
o
t 

95.7
°


16.7 sin(7
w
o
t) 

34.7sin(11
w
o
t) 

17 sin(13
w
o
t) A
These waveforms are plotted in Fig. 9.9-7. The waveforms reveal that the presence of power factor 
correction capacitor has caused deterioration in the harmonic performance of the system and that 
the harmonic filter is not very effective in this context. Observe the high frequency currents in the 
capacitor.
300
200
100
–100
–200
–300
t
v
O
(
t
)(V)
60
50
–50
40
–40
30
–30
20
–20
10
–10
t
i
f
(
t
) (A)
150
125
100
75
50
25
–25
–50
–75
–100
–125
–150
t
i
S
(
t
) (A)
125
i
c
(
t
) (A)
100
75
50
25
–25
–50
–75
–100
t
Fig. 9.9-7 
Waveforms of 
v
o
(
t
), 
i
S
(
t
), 
i
C
(
t
) and 
i
f 
(
t
) in example: 9.9-3


9.38
Dynamic Circuits with Periodic Inputs – Analysis by Fourier Series

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   284   285   286   287   288   289   290   291   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish