Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet286/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   282   283   284   285   286   287   288   289   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 9.9-1
A periodic ramp voltage waveform shown in Fig. 9.9-1 is applied to an RC low-pass circuit with time 
constant of 0.1 s. The period of the input waveform is 1 s. Find and plot the steady-state output voltage 
across the capacitor.
(
t
)
v
o
C
R
+
+
v
(
t
)
1
1
–1
v
(
t
)
t
Fig. 9.9-1 
the input waveform and the circuit for example: 9.9-1 
Solution
Step 1: Find the Fourier series of v(t

v
T
v t e
dt
n
jn t
T
o
=


1
0
( )
w
(
Q
integration can be performed over any interval that is one period wide)
∴ =
=
=
= −

+





v
te
dt
T
j
n
e
j
n
t
n
j
nt
o
j
nt
2
0
1
2
2
0
1
1
2
1
2
1
2
p
p
w
p
p
p
(
,
)
(
)
ee
j
n
j
n
j
nt

= +

=
2
0
1
0
1
2
2
p
p
p
This expression is valid only for n

0

v
T
v t dt
t dt
o
T
=
=
=


1
1
2
0
0
1
( )
∴ =
=

= −
=

=


a
a
n
b
n
v t
n
n t
n
n
n
0
1
0 5
0
0
1
0 5
1
2
. ,
,
( )
.
sin
for 
p
p
p
Step 2: Find the frequency response function
V j
V j
j C
R
j C
j
o
(
)
(
)
(
)
tan
w
w
w
w
wt
wt
wt
=
+
=
+
=
+
∠ −

1
1
1
1
1
1
2
1
Substituting 
t
 

0.1 s,
V j
V j
o
(
)
(
)
.
tan
.
w
w
w
w
=
+
∠ −

1
1 0 01
0 1
2
1


Analysis of Periodic Steady-State Using Fourier Series 
9.31
Step 3: Find the steady-state response to input components
Output corresponding to DC content in input 

0.5 (since DC gain 

1)
Output phasor for n
th
harmonic component 
= −
+
×

= −
+

1
1
1 0 01
2
2
0 2
1
1
1 0 395
2
1
2
p
p
p
p
p
n
n
n t
n
n
n
.
(
)
sin(
tan
.
)
.
sin(22
0 63
1
n t
n
p


tan
.
)
Step 4: Form the total output and decide the number of terms needed in the truncated series.
v t
n
n
n t
n
o
n
( )
.
.
sin(
tan
.
)
=

+


=


0 5
1
1
1 0 395
2
0 63
2
1
1
p
p
The DC content in the output is 0.5. We can choose to ignore all those harmonic terms that have 
amplitude less than 1% of this value. 
1
1
1 0 395
0 005
2
p
n
n
+
=
.
.
Ignore 1 under square root for an approximate solution.
⇒ =
n
10
Then, 
v t
n
n
n t
n
o
n
( )
.
.
sin(
tan
.
)


+


=

0 5
1
1
1 0 395
2
0 63
2
1
1
10
p
p
This output is plotted in Fig. 9.9-2. More terms will 
have to be included to remove the fine oscillations that 
appear in the waveform. Note that the circuit is not able to 
follow the sharp fall that takes place in the input at the end 
of every period. Any non-zero time constant is too slow to 
follow an instantaneous change. v
o
(t) can almost reach 1 if 
time constant is reduced further, but it will not reach zero 
for any time constant.
example: 9.9-2
The current source in the circuit in Fig. 9.9-3 represents a power electronic load (called a DC–DC 
chopper, used to step down DC voltages) that is drawing a pulsed current at 20 kHz. The current drawn 
by the load under a particular operating condition is shown as i
S
(t) in Fig. 9.9-3. The LC filter is expected 
to hold the voltage presented to the load at a constant level and to smooth the current in the battery. 
Pulsed current has adverse impact on battery life. Solve for i
L
(t), i
C
(t) and v
o
(t) under steady-state.
20
25
–25
–50
50
time
(
µ
s)
(
t
)
i
s
i
S
v
O
(
t
)
0.1 mF
0.5 mH
200 
V
+

(
t
)
i
C
i
L
(
t
)
(
t
)
Fig. 9.9-3 
Circuit and waveform for example: 9.9-2 
Fig. 9.9-2 
Output waveform 
v
o
(
t
) 
in example: 9.9-1
t
(
t
)
v
o
–2
–1
1
1
2
0.5


9.32
Dynamic Circuits with Periodic Inputs – Analysis by Fourier Series
Solution
The Fourier series coefficients of a symmetric square wave has been worked out in Example 9.6-5. 
They are 
4
p
n
in the trigonometric Fourier series. The waveform of i
S
(t) here contains a DC component 
of 10 A. Hence i
S
(t) – 10 will be a symmetric square wave that has even symmetry. The square wave 
in Example 9.6-5 had odd symmetry and had sine terms in its Fourier series. Here it will be cosine
terms.

=
+
×
=


i t
n
n t
s
n
n
( )
cos
10
40
1
40 10
3
1
p
p
A
odd
Inductor behaves as an open-circuit and capacitor behaves as a short-circuit under DC steady-state 
conditions. 
\
DC component in v
o
(t)(t

200 V, in i
L
(t

10 A and in i
C
(t

0 A.
The 200V battery is replaced by a short-circuit when the circuit solution for the AC components 
of i
S
(t) is attempted. This results in a parallel LC circuit with current excitation. Current division 
principle in parallel impedances gives the frequency response of inductor current as
I
j
I
j
j C
j L
j C
LC
n
n
L
S
(
)
(
)
.
.
w
w
w
w
w
w
=
+
=

=

≈ −
×

1
1
1
1
1
1 789 6
1 267 10
2
2
3
2
Thus the amplitude of inductor current at 20 kHz will be 1.267
×
10
-
3
×
40/
p

0.016 A. This is 0.16% 
of the DC current in it. We do not have to calculate the contribution due to other current harmonics. 
They will be very negligible due to the n
2
factor in the denominator of current division ratio and the 
1/n factor in the Fourier series of i
S
(t). Therefore, the inductor current is practically DC. Similarly, it 
can be shown that v
o
(t) is practically DC.
However, in practice, the 100
m
F aluminium electrolytic capacitor used will have a series resistance 
along with its capacitance. It is called effective series resistance (ESR). It comes up due to the lead 
resistance and foil resistance. In this case, a 100
m
F capacitor is likely to have an ESR of 0.3 
W
to 
0.8 
W
depending on the grade and quality of the capacitor chosen. Note that the impedance of 100 
m
F capacitor at 20 kHz is 
-
j0.08 
W
and that of 0.5 mH inductor is j62.8 
W
. Obviously, the ESR of 
capacitor rules the situation. Current division will take place between the impedance of inductor and 
ESR of capacitor and the filter performance is not going to be as good as we calculated. 
Increasing the capacitance value decreases the ESR. Thus the size of capacitor chosen in this kind 
of applications is based on ESR considerations rather than the kind of calculations we carried out 
without taking the ESR into account.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   282   283   284   285   286   287   288   289   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish