Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  dIscrete magnItude and Phase sPectrum



Download 5,69 Mb.
Pdf ko'rish
bet283/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   279   280   281   282   283   284   285   286   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

9.7 
dIscrete magnItude and Phase sPectrum
Spectral plot for a time-domain waveform displays the Fourier series coefficients graphically against 
frequency. Since the frequencies involved in a Fourier series are discrete values (fundamental frequency 
and its multiples), a plot of Fourier series coefficients cannot be a continuous curve. Therefore, the 
spectral plot is called a discrete spectrum. The exponential Fourier series coefficients are complex 
in general and two plots – one for magnitude of coefficients and the other for phase angle of the 
coefficients – will be needed.
The information on coefficients is portrayed as a series of vertical lines located at harmonic 
frequencies. These lines will be equidistant and the length of the lines will be proportional to 


9.24
Dynamic Circuits with Periodic Inputs – Analysis by Fourier Series
magnitude of the coefficient in the case of magnitude spectrum and to phase in the phase spectrum. 
The harmonic order n is also used in the abscissa instead of 
w
or f. The discrete spectral plots of the 
unit amplitude square wave we covered in Example 9.6-5 is shown in Fig. 9.7-1 for illustration. Its 
exponential Fourier series is 

v
j n
e
n
j
nt
n
odd n
=
=−∞


2
2
p
p
.
9
2
7
2
5
2
3
2
3
2
–9 –8 –7 –6 –5 –4 –3 –2 –1
1 2 3 4 5 6 7 8 9 10
n
–10
–9 –8 –7 –6 –5 –4 –3 –2 –1
–10
5
2
7
2
9
2
2
π
π
π
π
π
2
Magnitude
Phase
π
2
π
2
π
π
π
π
π

1 2 3 4 5 6 7 8 9
10
n
Fig. 9.7-1 
Discrete magnitude spectrum and phase spectrum for 
a
±
1 
square wave against harmonic order
The Fourier series coefficients of exponential Fourier series were plotted in the spectrum and 
that results in the so-called two-sided spectrum. It has been pointed out in earlier discussion that, in 
exponential Fourier series, the two companion components at and –always go together. Two such 
components will add up to yield a real sinusoid always. They cannot be split.
That the two components similarly placed on the left-hand and right-hand side of origin in a two-
sided spectrum should be viewed as an integral unit rather than as two separate components is to be 
kept in mind, especially when interpreting two-sided spectral plots drawn against 
w
. If we forget that, 
we will be tempted to ask that often repeated question – what is the meaning of negative frequency
There is no negative cyclic frequency. There is no negative angular frequency. There are only two 
complex exponential functions 
-
e
e
j t
j t
w
w
and 
-
.
These two always get scaled by complex conjugate 
numbers and enter into a sum. They never appear individually once the circuit problem has been 
solved. They always go together and produce either a sin 
w
t or a cos 
w
t or a mixture of the two. 
Whatever they produce at the end will have an angular frequency of 
w
rad/s and a cyclic frequency 
of 
w
/2
p
Hz. No electrical linear circuit can ever do any processing on 
e
j t
w
 without carrying out the 
same processing on 
e
j t
-
w
.
Both of them are complex exponential functions of time. Hence they have real and imaginary parts. 
Both, real and imaginary parts, are sinusoids. Those sinusoids have angular frequency of 
w
rad/s 
and cyclic frequency of 
w
/2
p
Hz, whether they come from 
e
j t
w
or from 
e
j t
-
w
. Therefore, there is no 
negative radian frequency or cyclic frequency.


Discrete Magnitude and Phase Spectrum 
9.25
However, we want to represent the magnitudes of scaling factors of 
e
e
j t
j t
w
w
and 
-
and phases of 
scaling factors separately in a spectral plot. Therefore, as a part of notation for presenting information 
efficiently, we decide to extend the 
w
-axis to the left and put the data on scaling factor of 
e
j t
-
w
there. 
That does not make a value on the left-hand side of 
w
-axis a negative frequency
.
Note that the magnitude spectrum of a real v(t) has to be necessarily even on 
w
and its phase 
spectrum has to be necessarily odd on 
w
. (Why?)

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   279   280   281   282   283   284   285   286   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish