Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet284/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   280   281   282   283   284   285   286   287   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 9.7-1
Some desktop off-line uninterruptible power supply (UPS) units used for supplying single PC units 
deliver the waveform as shown in Fig. 9.7-2 instead of a sine wave. (a) Find 
a
if the third harmonic 
content is to become zero. (b) With this value of 
a
, find V such that the rms voltage is 220 V. (c) Plot 
the magnitude and phase spectra with this value of 
a
and V. (d) The purity of a sine wave is measured 
in terms of a quantity called ‘Total Harmonic Distortion (THD)’. It is usually quoted in percentage 
and is defined as follows:
THD
=
×
=


| |
| |
%


v
v
n
n
2
2
1
100
, where 

v
n
is the 
exponential Fourier series coefficient. The rms 
value of all harmonic components together 
is expressed as a percentage of rms value of 
fundamental component in the THD measure. Amplitudes may be used instead of rms values since it 
is a ratio. Calculate the THD of the waveform in this example.
Solution
The trigonometric Fourier series of the waveform with V 

1 and T 

1 is determined first. It is an odd 
half-wave symmetric waveform. Its trigonometric Fourier series will contain only odd sine harmonics. 
With 

1 and T 

1,

=
=
=


=

v t
b
n t
b
T
v t
n t dt
b
nt
n
o
n
o
T
n
n
( )
sin
( )sin
sin
w
w
p
and 
4
4
2
0
2
1
ddt
n
n
n
n
n
n
a
a
p
pa
p
a
p
p
p
a
2
1
2
4
2
1
4
2
1 2
2
(
)
[cos
cos
(
)]
sin
sin
(
)


=


=

The trigonometric Fourier series coefficients tends to zero for even n as expected. Further, the 
Fourier series of this waveform approaches that of a unit amplitude square wave as 
a→
 0 as expected.
(a) If the third harmonic content is to be zero, then 
sin
(
)
3 1 2
2
p
a
-
must become zero. Therefore, 
a
=
1
6
.
With this value of 
a
, the waveform will be zero for one-third of a half-cycle.
Fig. 9.7-2 
Waveform for example: 9.7-1
α
α
)
T
2
T
2
T
2
T
2
T
2
T
2
α
(1–
α
)
(1–
v
(
t
)
V
–V
t


9.26
Dynamic Circuits with Periodic Inputs – Analysis by Fourier Series
(b) Therefore rms value 

2
3
0 8165
2
V
V
=
.
.
If this is to be 220 V, V must be 

270 V.
(c) The exponential Fourier series of v(t) can be constructed from trigonometric Fourier series by 
noting that coefficients of sine terms will be twice the negative of imaginary part of exponential 
Fourier series coefficients. Therefore, with V

1, T 

1 and 
a
 

1/6,

=

=−∞


v t
j
n
n
n
e
j
nt
n
n
( )
sin
sin
2
2
3
2
p
p
p
p
odd
(9.7-1)
The two-sided spectrum is plotted in Fig. 9.7-3 with the scaling factor of 270 V incorporated.
(d) Refer to Eqn. 9.7-1. 
sin
n
p
2
has a magnitude of 1 for all odd n. 
sin
n
p
3
has a magnitude of 0 
for all odd multiples of 3 and 0.866 for all other odd n including n 

1. 
8
p
is a common factor. 
Therefore, THD 

1
5
1
7
1
11
1
13
1
17
1
19
100 28 5
2
2
2
2
2
2
+
+
+
+
+
+ ×


. %
1 2 3 4 5
59.5
59.5
297.7 297.7
42.5
42.5
6 7 8 9 10
n
agnitude
Phase
2
π
2
π

1 2 3 4 5 6 7 8 9 10
n
–9 –8 –7 –6 –5 –4 –3 –2 –1
–10
–9 –8 –7 –6 –5 –4 –3 –2 –1
–10
m
Fig. 9.7-3 
Spectral plots for 
v 
(
t
) in example: 9.7-1 
9.8 
rate of decay of harmonIc amPlItude
Fourier series is an infinite series. It requires infinite number of sinusoids with frequencies ranging 
from fundamental frequency to infinitely large frequency to synthesise a non-sinusoidal periodic 
waveform in general. There may be special cases where the Fourier series terminates at some finite 
harmonic order. But they are only special cases.
This indicates that we have to find out the AC steady-state response of the circuit to each and every 
component in Fourier series of input and sum them up, to get the periodic steady-state response of 
the circuit. That calls for infinite computation – we will not get done with it. Hence, the issue of rate 
of decay of harmonic amplitudes is of practical significance in deciding how many terms from the 
Fourier series should we carry in any analysis problem.


rate of Decay of harmonic Amplitude 
9.27
Circuits carrying high frequency voltages and currents cause electromagnetic interference (EMI) 
in themselves as well as in neighbouring circuits. This EMI takes the form of induced voltages and 
currents due to electromagnetic coupling and electrostatic coupling between circuits as well as 
due to electromagnetic radiation. Every circuit carrying time-varying voltage and current acts as a 
transmitting antenna and receiving antenna simultaneously. The induced voltages and currents can 
lead to malfunction in circuits if not actual damage.
EMI happens at all frequencies. However, the induced voltages are usually of negligible magnitude 
at low frequencies. Therefore, a designer will often be forced to take out high frequency content from 
circuit waveforms for reducing destructive electromagnetic interference. An appreciation of how the 
Fourier series coefficients vary with harmonic order and the factors governing such variation helps 
him in such a task.
We noted in Example 9.6-1 and subsequent examples in Section 9.6 that periodic impulse 
train waveforms of different type will have Fourier series with coefficients which do not vary 
with harmonic order n. The amplitude of harmonics is independent of harmonic order in such 
waveforms.
Starting from such impulse train waveforms, the integration in time property of Fourier series 
helps us to see that periodic square waveforms and periodic rectangular pulse waveforms should 
possess Fourier series with their coefficients decreasing in inverse proportion to the harmonic order. 
Integrating an impulse train results in a waveform that will have step discontinuities in one period. 
Thus, we conclude that periodic waveforms which contain step discontinuities will have Fourier series 
coefficients that are proportional to 
1
n
, where n is the harmonic order.
Integration brings a factor of 
1
n
in the Fourier series coefficients. Integrating square or rectangular 
pulse waveforms result in waveforms which contain sections in which it varies linearly with time 
and sections in which it remains constant. Such waveforms are continuous, but their first derivative 
will have step discontinuities. Their second derivative will contain impulse train along with other 
possible components. Thus we conclude that periodic waveforms that have impulses in their second 
derivative will have Fourier series with coefficients decreasing with 
1
2
n
at the least. There may be 
terms involving 
1 1
3
4
n n
,
etc. in the Fourier series of such a waveform, but the terms involving 
1
2
n
are 
the ones which decide how many terms in the Fourier series are to be included in a circuit analysis 
context or EMI context.
By extending this reasoning we may state qualitatively that if a periodic waveform v(t) requires 
m successive differentiation operations before impulses make their appearance, then the harmonic 
amplitude in its Fourier series will decrease with 
1
n
m
at the least.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   280   281   282   283   284   285   286   287   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish