Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


particular harmonic order



Download 5,69 Mb.
Pdf ko'rish
bet278/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   274   275   276   277   278   279   280   281   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar


particular harmonic order n using trigonometric identities.

=
+

=
=
+
=
=


v t
c
c
n t
c
v
c
a
b
v v
n
o
n
n
o
n
n
n
n n
( )
cos(
)
,
o
o
where
w
f
1
2
2
2
**
| |,
tan
, ,
=
=
= −∠
=

2
1 2 3
1

v
b
a
v
n
n
n
n
n
n
f
for 
(9.3-2)
9.4 
condItIons for exIstence of fourIer serIes
The exponential and trigonometric Fourier series exists for all v(t) which satisfy a set of conditions 
known as Dirichlet’s conditions.
(i) The function v(t) must be single-valued everywhere.
(ii) The integral 
| ( )|
v t dt
t
t
T
0
0
+

is finite for any t
0
. This condition ensures that all Fourier series 
coefficients are finite-valued.
(iii) v(t) has only a finite number of maxima and minima in any one period.
(iv) v(t) has a only a finite number of discontinuities in any one period. Moreover, each discontinuity 
is a finite discontinuity.
There are functions that violate one or more of Dirichlet’s conditions. But they do not usually 
come up in electrical circuits. Hence we can safely assert that all waveforms we encounter in physical 
circuits will satisfy these conditions.


Waveform Symmetry and Fourier Series Coefficients 
9.11
If v(t) satisfies all the Dirichlet’s conditions, its Fourier series is guaranteed to exist and converge 
to the function value except at the points of discontinuity. At the points of discontinuity, the Fourier 
series will converge to the average value – i.e. to half the sum of value of v(t) at the left and right of 
the discontinuity.
This implies that, for a v(t) that satisfies all the four conditions, the partial sum of its Fourier 
series tends to approach the value of v(t) as the number of series terms included in the partial sum 
approaches infinity.
lim
( )
( )
N
n
jn t
n
N
n
v e
v t
v t
t
o
→∞ =−
=
=

w
0
0
0
if 
is continuous at and
N
N
N
n
jn t
v e
v t
v t
v t
o

→∞

+
=
+
lim
(
)
(
)
( )

w
0
0
0
2
if 
is discontinuous aat 
t
n
N
n N
0
=−
=

(9.4-1)
All the terms in a Fourier series are continuous functions of time. Eqn. 9.4-1 seems to suggest 
that the Fourier series converges to a discontinuity – i.e. the series converges to 
v t
(
)
0
-
at 

t
0
-
, to 
0 5
0 5
0
0
. (
)
. (
)
v t
v t

+
+
at t 

t
0
and to 
v t
(
)
0
+
at t 

t
0
+
.
How can a sum of continuous functions produce 
jump discontinuity? In fact it doesn’t. The partial sum of Fourier series in Eqn. 9.4-1 oscillates with 
time around the point of discontinuity. As N is increased, these oscillations in partial sum value get 
crowded more and more towards a small neighborhood of t
0
. The oscillations never really disappear. 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   274   275   276   277   278   279   280   281   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish