Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  PerIodIc Waveforms In cIrcuIt analysIs



Download 5,69 Mb.
Pdf ko'rish
bet274/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   270   271   272   273   274   275   276   277   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

9.1 
PerIodIc Waveforms In cIrcuIt analysIs
We consider the first question. 
Expansion in terms of sinusoids is not the only expansion possible for a periodic waveform. 
However, this expansion turns out to be of great utility in Circuit Analysis.
Complex exponential functions of the form e
st
, where s is a complex number, are eigen functions of 
linear time-invariant circuits. This means that the total response of the circuit when v
S
(t

e
st
for all t
is applied is a scaled copy of e
st
itself. The scaling factor will be a function of s and circuit parameters. 
It will be a complex number (this complex number is called an eigen value). Note that e
st
has to be 
applied from t 
= -∞
for this to be true. 
Forced response components in a linear time-invariant circuit due to simultaneously 
acting forcing functions obey superposition principle. 
therefore, if an input function with an arbitrary waveshape can be expressed as a sum 
of many (finite or infinite) functions of a type which has a simple waveshape, we will 
be able to arrive at the forced response of the circuit for this arbitrary waveshape by 
superposing forced response components for the simple waveshape. 


Periodic Waveforms in Circuit Analysis 
9.3
s in e
st
is, in general, a complex number and e
st
is a complex signal. A real physical waveform that 
we find in a physical circuit cannot have an imaginary part. Therefore, we expect that if we find e
st
with a particular complex value for s 

a

j
w
necessary in the expansion for a real waveform, we 
will find that (i) the conjugate signal of e
st
will also be needed and that (ii) the scaling factors for 
e
st
and its conjugate will turn out to be conjugate numbers. Thus, these two conjugate contributions 
will combine to yield a component of e
a
 
t
sin(
w
t 

q
) type. Depending on the values of 
a
and 
w
, this 
component may be a decaying exponential, a growing exponential, an exponentially damped sinusoid, 
an exponentially growing sinusoid or a sinusoid of fixed amplitude.
But, is it possible to expand any arbitrary function of time, say v(t), as a sum of scaled complex 
exponential functions even if we allow all possible values of s to contribute to the sum? That is a 
question for mathematicians. The short answer for the student of circuit analysis is that, yes, it is 
possible, except for some very peculiar and pathological functions which exist only in the pages of 
books on mathematics and never in a physical system. 
An exponentially damped sinusoid is a complex waveshape. So is an exponentially growing sinusoid. 
True, they are eigen functions of linear circuits and do not pose any difficulty in solving for forced 
response in circuits. But let us try to take the simpler ones first. The real exponential function does not 
suit our purpose since there is nothing steady about it. Therefore we choose the simplest – the steady 
amplitude sinusoid which is a special case of e
st
with the real part of s set to zero. That is, we choose all 
those signals of type 
j
w

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   270   271   272   273   274   275   276   277   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish