Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet194/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   190   191   192   193   194   195   196   197   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 6.5-1
If v(t) is a pure alternating periodic waveform with period T and rms value V
rms
find the rms value of 
a new periodic waveform v
1
(t
=
V 
+
v(t) where V is a constant quantity. Thereby, find the rms value 
of 10
+
10sin100
p
 t V.
Solution
V
T
V v t
dt
T
V
v t
Vv t dt
T
T
1rms
=
+
=
+
+


1
1
2
2
0
2
2
0
[
( )]
[
( ( ))
( )]
The component 2Vv(t) represents a pure alternating component with zero cycle average since v(t
is pure alternating waveform and V is a constant. Hence, integration of this term over one cycle period 
yields zero integral.

=
+
=
+

V
T
V
v t
dt
V
V
T
1rms
rms
1
2
2
0
2
2
[
( ( )) ]
Therefore rms value of 10
+
10sin100
p
 t 
=
10
10
2
150 12 25
2
2
+ 



=
=
.
V
example: 6.5-2
If v(t) is a periodic waveform with period T, rms value V
rms
and cycle average value V
cav
, find the 
rms value and cycle average value of a new periodic waveform v
1
(t
=
V 
+
v(t), where V is a constant 
quantity.


6.28
Power and Energy in Periodic Waveforms 
Solution
v(t) has a non-zero cycle average value. Therefore it can be written as V
cav
+
v
ac
(t), where v
ac
(t) is a 
pure alternating waveform with zero cycle average. Using the result we arrived at in Example 6.5-1, 
V
V
V
V
V
V
rms
cav
ac rms
ac rms
rms
cav
2
2
2
2
2
2
=
+

=

Now, v
1
(t
=
V 
+
v(t
=
V 
+
V
cav
+
v
ac
(t).
Using the result from Example 6.5-1 again,
V
V V
V
1rms
cav
ac rms
2
2
2
=
+
+
(
)
Substituting for V
ac rms
2

V
V V
V
V
V
VV
V
V
V
V
1rms
cav
rms
cav
cav
rms
1rms
2
2
2
2
2
2
2
2
2
=
+
+

=
+
+

=
+
(
)
(
)
V
V
V
cav
rms
+
2
The cycle average of v
1
(t
=
V
cav
+
V 
example: 6.5-3
Find the rms value of a symmetric square wave of 
± 
10 V and 50 Hz frequency.
Solution
When a symmetric square wave of amplitude V is squared, the resulting waveform is the same as 
squaring a DC voltage of V V. Therefore, rms value of a symmetric square wave is same as the 
amplitude of the wave. Hence, the rms value of square wave voltage in this example is 10 V.
example: 6.5-4
Find the rms value, half-cycle value, crest factor and form factor for a symmetric triangular waveform 
shown in Fig. 6.5-1.
v
(
t
)
V
p

V
p
0.25 
T
0.5 
T
0.75 
T
T
t
Fig. 6.5-1 
Symmetric triangle waveform for Example 6.5-4 
Solution
Due to symmetry, the squared waveform needs to be integrated only from 0 to 0.25T. The integral for 
0 to T range is four times this value.


Effective Value (RMS Value) of Periodic Waveforms 
6.29
V
T
V t
T
dt
V
T
T
V
T
rms
p
p
p
V
=




=
×
(
)
=

4
4
64
3
0 25
3
2
0
0 25
2
3
3
.
.
V
T
v t dt
T
V t
T
dt
V
T
T
caav
p
p
V
=
= ×
=


2
2
2
4
2
0
0 5
0
0 25
( )
.
.

=
=
=
=
=
=
Form factor
Crest factor
p
p
p
p
V
V
V
V
3
2
2
3
1 1547
3
3 1 7
.
. 332
example: 6.5-5
Find an expression for rms value of the periodic pulse train shown in Fig. 6.5-2.
v
(
t
)
t
T
V
p
2

T
2
t
2

t
2
Fig. 6.5-2 
Periodic waveform for Example 6.5-5 
Solution
V
T
v t
dt
T
V
dt
V
T
T
T
rms
p
p
V
=
[ ]
=
  =




1
1
2
0 5
0 5
2
0 5
0 5
( )
.
.
.
.
t
t
t
Note the limits of integration.
example: 6.5-6
Let v(t
=
V
m
sin
w
t V. A new voltage waveform is generated from this waveform by a process called 
half-wave rectification, which is represented mathematically as
v t
v t
v t
v t
r
( )
( )
( )
( )
=
<




0
0
0
if
if
.
Find the rms value and cycle average value of v
r
(t).


6.30
Power and Energy in Periodic Waveforms 
Solution
The area under squared v
r
(t) over one T will be half the area under squared v(t) since one half-cycle is 
missing in v
r
(t). Therefore, rms value of v
r
(t) will be 
1
2
times the rms value of v(t). Therefore, rms 
value of v
r
(t
=
0.5V
m
V.
Half-cycle average of v(t) is 2V
m
/
p
. Therefore, half-cycle area 
=
2
2
V
T
m
p
×
=
V
m
T/
p
. This area 
becomes the full cycle area in v
r
(t) since second half cycle is zero-valued. Therefore, cycle average of 
v
r
(t
=
V
m
T/
p
÷ 
T 
=
V
m
/
p
V.
6.6 
the PoWer SuPerPoSItIon PrIncIPle
Current variables and voltage variables in a linear electric circuit obey the Superposition Theorem. 
However, instantaneous power in a linear circuit does not follow superposition principle. Consider a 
circuit driven by two sources v
S1
(t) and v
S2
(t) and let the corresponding response components for the 
voltage across a particular element be v
11
(t) and v
12
(t). The corresponding response components of 
current through that element are i
11
(t) and i
12
(t) as per the passive sign convention. Then,
The instantaneous power delivered to the element when v
S1
(t) is acting alone,
p
1
(t
=
v
11
(t) i
11
(t)
The instantaneous power delivered to the element when v
S2
(t) is acting alone,
p
2
(t
=
v
12
(t) i
12
(t)
The instantaneous power delivered to the element when v
S1
(t) and v
S2
(t) are acting together,
p(t
=
[v
11
(t
+
 v
12
(t)][ i
11
(t
+
 i
12
(t)] 
=
v
11
(t) i
11
(t
+
v
12
(t) i
12
(t
+
[v
11
(t) i
12
(t
+
v
12
(t) i
11
(t)]
=
p
1
(t
+
p
2
(t
+
Cross Power Terms
p(t) should have been equal to p
1
(t
+
p
2
(t) if instantaneous power obeys superposition principle. 
Therefore, instantaneous power does not follow superposition principle in a linear circuit. This 
conclusion is general in nature and there are no exceptions.
However, there are exceptions to this rule when it comes to average power. Let us confine to the 
case of periodic waveforms that are applied to circuits for sufficient duration such that average power 
can be taken as cyclic average power. Let the average power delivered to the element in question when 
v
S1
(t) is acting alone be P
1
and the corresponding value when v
S2
(t) is acting alone be P
2
. We assume 
that v
S1
(t) and v
S2
(t) have a least common period of T s. This common period need not be the period 
of any one of them. For instance, let the period of v
S1
(t) be 1 sec and that of v
S2
(t) be 1.25 s. Then the 
value of T will be 5 s since there will be integer number of cycles of both in a 5 s period. Five seconds 
is the lowest interval that will contain integer number of cycles of both. Cyclic average power can be 
found by integrating over multiple cycles provided the averaging is done over the same number of 
cycle periods. Therefore, taking T as the integration interval is permitted in the evaluation of P
1
and P
2
.
P
T
v t i t dt
P
T
v t i t dt
T
T
1
11
11
0
2
12
12
0
1
1
=
=


( ) ( )
( ) ( )
The average power delivered to the element when both sources are acting together, P, is given by


The Power Superposition Principle 
6.31
P
T
v t
v t i t
i t dt
T
v t i t
T
T
=
+
+
=
+

1
1
11
12
11
0
12
11
11
0
[
( )
( )][ ( )
( )]
[
( ) ( )
∫∫
+
+
= +
+
v t i t
v t i t
v t i t dt
P
P
T
v t
12
12
12
11
11
12
1
2
12
1
( ) ( )
( ) ( )
( ) ( )]
( )
ii t dt
T
v t i t dt
T
T
11
0
11
12
0
1
( )
( ) ( )


+
(6.6-1) 
Hence, in general, average power does not follow superposition principle. However, unlike the 
case of instantaneous power, the cross power terms in the average power can go to zero under special 
conditions.
Consider a case where v
S1
(t) and v
S2
(t) are two sinusoidal waveforms at different angular frequencies 
of 
w

and 
w
2
. Note that one of them can be zero as a special case indicating a DC or steady input. 
Assume that 
w


w
2
. In this case, T will be an integer multiple of 2
p
/
w
1
and another integer multiple 
of 2
p
/
w
2
i.e., 
T k
k
 
k
k
=
=
=
1
1
2
2
1
2
1
2
2
2
p
w
p
w
w
w
and 
, where k
1
and k

are two integers. It is possible to find 
a value for T satisfying this condition only if the ratio 
w
1
/
w
2
is a rational number.
The circuit is linear. Therefore v
11
(t) and i
11
(t) will be sinusoids at 
w
1
rad/s and v
12
(t) and i
12
(t) will 
be sinusoids at 
w
2
rad/s. Therefore, both cross power terms – v
11
(t) i
12
(t) and v
12
(t) i
11
(t) – will involve 
products of two sinusoidal waveforms of different frequencies

w
1
and 
w
2
. By applying trigonometric 
identities they may be expressed as sinusoidal waveforms of sum frequency and difference frequency. 
Therefore, v
11
(t) i
12
(t
+
v
12
(t) i
11
(t) will yield two sinusoids – one with a frequency of 
w
1
+
w
2
rad/s and 
the second with a frequency of 
w
2

w
1
rad/s. 
Both these sinusoidal waveforms will have integer number of cycles within an interval of length T 
as shown next.
Period of
rad/s component
s
s
w w
p
w w
p
w
p
1
2
1
2
2
2
2
1
1
+
=
+
=
T
T
T
k
w
w w
w
w
w
w
1
2
1
1
2
1
1
2
1
2
1
2
+
= +
= + =
=




k
k
k
k
k
k
an integer
Period o

ff
rad/s component
d
d
w
w
p
w
w
p
w
p
w w
2
1
2
1
2
2
2
1
1
2
1

=

=
= −

T
T
T
k
k
11
1
2
1
2
1
1
2
1
2
+
=
− =
=




k
k
k
k
k
w
w
w
w
an integer

Therefore, the area under these two sinusoidal waveforms over an interval of T s long will be zero. 
Thus, the cross power terms in the instantaneous power contribute only zero to the average power in 
this case. Therefore, P 
=
P
1
+
P
2
. We can extend this analysis to a case involving many sinusoidal 
sources of different frequencies easily and arrive at the Power Superposition Principle stated in the 
following:
The average power delivered to an element in a linear circuit excited by sinusoidal sources 
of different frequencies (including DC, 
i.e.,
zero frequency) obeys superposition principle.


6.32
Power and Energy in Periodic Waveforms 

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   190   191   192   193   194   195   196   197   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish