12.6
SeriesandParallel
RLC
Circuits
v t
V
e
e
e
e
I
C
e
e
C
o
t
t
t
t
o
t
t
( )
=
−
+
−
−
−
−
−
a
a
a
a
a
a
a
a
a
a
a
a
a
a
2
1
1
1
2
1
2
1
1
1
1
2
1
2
V
V for
t
V e
e
e
I
C
e
e
o
t
t
t
o
t
t
≥
=
+
−
−
−
−
−
+
0
1
1
2
1
2
1
2
1
2
a
a
a
a
a
a
a
a
a
a
11
1
1
2
0
1
1
2
1
≥
=
−
−
−
+
−
+
V for
t
V e
e
e
I
C
e
e
o
t
t
t
o
t
a
a
a
a
a
a a
aa
a a
2
1
2
0
t
t
−
≥
+
V for
Now, let
a
1
=
a
and
a
2
=
a
+
D
a
. Then,
v t
V e
e
e
I
C
e
e
C
o
t
t
t
o
t
t
( )
=
−
−
−
+
−
−
+
(
)
+
(
)
a
a
a
a
a
a
a
a
a
a
1
∆
∆
∆
∆
≥
−
=
−
≈− ×
+
+
(
)
V for
for sm
t
e
e
e
e
e
t
t
t
t
t
t
0
1
a
a
a
a
a
a
a
∆
∆
∆
aall
V for
where
∆
∆
a
a
a
a
a
lim
( )
→
+
=
+
−
≥
0
0
v t
V e
I
C
V t e
t
C
o
t
o
o
t
a
= −
−
R
L
2
1
sec
Therefore, the circuit
solution in this case is
v t
V e
I
C
R
L
V t e
t
C
o
R
L t
o
o
R
L t
( )
=
+
+
≥
−
( )
−
( )
+
2
2
2
0
V for
. The other circuit variables may be readily
obtained now. The next example illustrates this case.
example: 12.1-2
A series
RLC circuit has
R
=
2
W
,
L
=
1 H and
C
=
1 F. The capacitor is initially charged to 2 V and the
initial current in the inductor is 2 A at
t
=
0
-
. Find the zero-input response of capacitor voltage and
circuit current.
Solution
The differential equation governing the capacitor voltage
v
C
(
t) is
d v
dt
dv
dt
v
t
C
C
C
2
2
2
0
0
+
+
=
≥
+
for
.
The characteristic equation is
g
g
2
2
1 0
+
+ =
and its roots
a
1,2
=
-
1 s
-
1
and –1 s
-
1
. The trial solution
to be attempted is of the form
v
C
(
t)
=
A
1
e
-
t
+
A
2
t e
-
t
V. Applying initial conditions at
t
=
0
+
, we get
two
equations in A
1
and
A
2
.
v
A
dv
dt
I
C
A e
A te
A e
C
C
o
t
t
t
( )
(
)
(
0
2
2
1
0
1
2
2
0
+
−
−
−
=
=
=
=
= −
−
+
+
V;
V
s
++
= −
+
)
A
A
1
2
TheSeries
RLC
Circuit–Zero-InputResponse
12.7
∴ =
=
∴
=
+
≥
=
−
−
−
+
A
A
v t
e
te
t
i t
C
t
t
1
2
1
2
4
2
4
0
V and
V
V for
and
s
( )
( )
C
C
dv
dt
e
te
e
e
te
t
v t
L
di
dt
C
t
t
t
t
t
L
= −
−
+
=
−
≥
=
=
−
−
−
−
−
2
4
4
2
4
0
A for
( )
11
2
4
4
6
4
0
2
di
dt
e
te
e
e
te
t
v t
Ri
i
t
t
t
t
t
R
= −
+
−
= −
+
≥
= =
−
−
−
−
−
+
V for
( )
==
−
≥
−
−
+
4
8
0
e
te
t
t
t
V for
These waveforms are shown in Fig. 12.1-3.
case-3
`
1
and
`
2
complex and conjugates
with negative real parts
Now we come up against the most interesting case
of all. This occurs when
R
L
C
<
2
. The quantity
R
L
LC
2
2
4
1
−
is negative
under this condition
and the roots of characteristic equation become
a
1 2
2
2
2
1
4
,
= −
±
−
R
L
j
LC
R
L
.
We define three new symbols – mainly for convenience at present. But they will turn out to be
important parameters in circuit studies soon. They are defined as in Eqn. 12.1-6.
Let
,
and
x
w
w
x w
=
=
=
−
= −
R
L
C
LC
LC
R
L
n
d
n
2
1
1
4
1
2
2
2
(12.1-6)
The roots of characteristic equation can be expressed in terms
of these new symbols as
a
xw
x w
a
xw
x w
1
2
2
2
1
1
= −
+
−
= −
−
−
n
n
n
n
j
j
and
.
v t
V
e
e
I
C
e
e
t
C
o
t
t
o
t
t
( )
,
=
−
−
−
−
−
≥
+
a
a
a
a
a
a
a
a
a
a
a
2
1
2
1
2
1
1 2
1
2
1
2
0
V for
== −
±
−
= −
±
⇒
−
= −
xw
x w
xw
w
a
a
w
n
n
n
d
d
j
j
j
1
2
2
2
1
Simplifying
a
a
a
x w
xw
w
a
xw
w
2
2
1
2
1
1
2
1
e
j
j
e
t
n
n
d
j
t
n
d
−
=
−
−
−
−
− −
−
+
(
)
(
(
)
xxw
w
xw
w
n
d
j
t
j
e
n
d
+
−
−
)
(
)
Now we use Eqn. 12.1-4 for the zero-input response for
v
C
(
t) and substitute these expressions for
a
1
and
a
2
and employ Euler’s formula for algebraic simplification of the resulting expression.
Fig. 12.1-3
Zero-inputresponse
waveformsofaseries
RLC
circuitinExample:12.1-2
3
4
Volts
Amps
Time (s)
2
1
1
2
3
–1
–2
–3
–4
–5
–6
v
R
(
t
)
v
C
(
t
)
i
(
t
)
v
L
(
t
)
12.8
SeriesandParallel
RLC
Circuits
=
−
−
−
−
(
)
− −
+
(
)
=
−
−
( )
−
(
)
e
j
j
e
j
e
n
d
d
t
n
n
d
j
t
n
d
j
t
xw
w
w
x w
xw
w
xw
w
2
1
2
ee
j
e
e
j
e
e
n
d
d
d
d
t
n
n
j
t
j
t
d
j
t
j
t
−
( )
−
(
)
( )
−
(
)
−
−
−
(
)
−
+
(
xw
w
w
w
w
x w
xw
w
2
1
2
))
=
−
−
−
(
)
−
(
)
−
e
j
j
t
j
t
n
t
n
n
d
d
d
xw
x w
xw
w
w
w
2
1
2
2
2
sin
cos
(by Euler’s formula)
=
−
+
=
−
−
e
t
t
n
t
d
d
d
xw
x
x
w
w
w
1
1
2
sin
cos
(
∵
xx w
a
a
a
a
a
a
a
a
2
2
1
2
1
1
2
1
2
n
t
t
t
t
e
e
e
e
)
Similarly simplifying
,
−
−
−
−
= −
ee
t
v t
V e
t
t
n
n
t
n
d
C
o
t
d
d
−
−
−
∴
=
−
+
xw
xw
x w
w
x
x
w
w
1
1
2
2
sin
( )
sin
cos
+
−
−
I
C
e
t
o
t
n
d
n
xw
x w
w
1
2
sin
=
LC
n
w
1
Substituting
in the second tterm ,
v t
V e
t
t
I
e
C
o
t
d
d
o
L
C
t
n
n
( )
sin
cos
=
−
+
+
−
−
xw
xw
x
x
w
w
1
2
11
1
2
−
x
w
sin
d
t
V
Therefore, the zero-input response for capacitor voltage in this case with 0
≤
x
< 1 is given by the
following expression in terms of
x
and
w
n
.
v t
e
V
I
t V
t
C
t
o
o
L
C
n
o
n
n
( )
sin
cos
=
+
−
−
+
−
−
xw
x
x
x w
x w
1
1
1
2
2
2
≥
=
=
+
V for
where
t
LC
R
L
C
n
0
1
2
w
x
,
(12.1-7)
That, indeed, looks slightly complicated. We will take it up through special cases soon. But before
that, here is how it looks for a series
RLC circuit with
L
=
1 H,
C
=
1 F,
R
=
0.5
W
,
V
o
=
2 V and
I
o
=
2 A.
The value of
x
is 0.25 and
w
n
is 1.
The
zero-input response has an exponentially damped sinusoidal shape. All the circuit
variables oscillate with the amplitude of oscillation decreasing with time. An exponential function
governs the decrease in amplitude with time. The
numbers
x
and
w
n
decide the decay rate of this
exponential function. They also decide the time-interval between successive zero-crossings of circuit
variables.
TheSeriesLCCircuit–ASpecialCase
12.9
3
Volts
Amps
2.5
2
1.5
1
0.5
–0.5
2
4
6
8
10
Time (s)
The
exponential envelope
12
–1
–1.5
–2
–2.5
–3
v
R
(
t
)
v
C
(
t
)
i
(
t
)
v
L
(
t
)
Fig. 12.1-4
ZIRUnderdampedzero-inputresponseofaseries
RLC
circuitwith
R
=
0.5
W
,
L
=
1H,
C
=
1F,
V
o
=
2Vand
I
o
=
2A
Do'stlaringiz bilan baham: