Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet356/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   352   353   354   355   356   357   358   359   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

12.1 
The SerieS 
RLC
 CirCuiT – Zero-inpuT reSponSe
We begin our study of RLC circuits with series 
RLC circuit in this section. Figure. 12.1-1 shows a 
series RLC circuit with voltage excitation with all 
instantaneous variables identified.
We choose to develop the differential equation 
governing the circuit in terms of the voltage across the 
capacitor v
C
(t), i.e., we select v
C
(t) as the describing 
variable for the circuit. We obtain all other variables 
in terms of this variable once the solution is obtained.
i t
C
dv t
dt
C
( )
( )
(
=
By element equation of a capacitor)

+
+
+
=
v t
Ri t
L
di t
dt
v t
S
C
( )
( )
( )
( ) 0(By KVL)
i t
( )
Substituting for
in term
ms of 
and rearranging terms,
v t
C
( )
d v t
dt
R
L
dv t
dt
LC
v t
LC
v t
C
C
C
S
2
2
1
1
( )
( )
( )
( )
+
+
=
All voltages and currents in a dynamic circuit are, in general, functions of time. Even if the 
variables do not include (t) explicitly, we understand them to be functions of time. Hence we write the 
describing differential equation of series RLC circuit in the following manner.
d v
dt
R
L
dv
dt
LC
v
LC
v
C
C
C
S
2
2
1
1
+
+
=
(12.1-1)
This equation is true for all t. However, we know the input source function v
S
(t) only from t 
=
0
+
onward. There may also be a discontinuity in v
S
(t) at t 
=
0. Therefore, we have to have additional 
information summarising all that happened to the inductor and capacitor from t 
=
-∞
to 
=
0
-
in the 
form of initial condition specification for inductor current and capacitor voltage in order to solve this 
differential equation for t 
≥ 
0
+
. The two initial conditions needed to solve a second-order differential 
equation are the values of its zeroth and first derivatives at t 
=
0
-
. But, if we know the initial condition 
for inductor current to be I
o
at t 
=
0
-
, we can obtain the initial value of first derivative of v
C
(t) as I
o
/C 
since i(t) = C dv

/dt. Thus, the differential equation that we attempt to solve is restated as 
Fig. 12.1-1 
Series 
RLC
circuit with 
voltage source excitation
+
+
+
+
v
R
(
t
)
v
S
(
t
)
v
L
(
t
)
v
C
(
t
)
i
(
t
)
C
R
L






TheSeries
RLC
Circuit–Zero-InputResponse

12.3
d v
dt
R
L
dv
dt
LC
v
LC
v
t
v
V
dv
dt
C
C
C
S
C
o
C
2
2
1
1
0
0
+
+
=

=
+

for
with
V and
( )
((
)
0

=
I
C
o
V/s
(12.1-2)
12.1.1 
Source-Free response of Series 
RLC
 circuit
We focus on the zero-input response (i.e., source-free response) of RLC circuit first. v
S
(t
=
0 for t 

0
+
for this analysis. Initial energy storage in inductor (evidenced by a non-zero I
o
) and/or initial energy 
storage in capacitor (evidenced by a non-zero V
o
) are responsible for non-zero response under this 
condition. The differential equation describing zero-input response is 
d v
dt
R
L
dv
dt
LC
v
t
v
V
dv
dt
C
C
C
C
o
C
2
2
0
1
0
0
0
+
+
=

=
+


for
with
V and
( )
(
)
==
I
C
o
V/s
(12.1-3)
The complementary function of homogeneous differential equations with constant coefficients is 
Ae
g
t
. Substituting this trial solution in the differential equation in Eqn. 12.1-3,
g
g
g
g
g
2
2
1
0
1
0
+
+




= ⇒
+
+
=
R
L
LC
Ae
R
L
LC
t
Let the two solutions off this algebraic equation be called 
and
Then,
1
2
a
a
a
.
1
2
= −
+
R
L
R
R
L
LC
R
L
R
L
LC
v t
A e
A e
A
C
t
t
2
2
2
2
2
1
2
4
1
2
4
1
1
2

= −



=
+
and
where
a
a
a
( )
11
2
and
are two arbitrary constants to be fixed by
A
iinitial conditions.
The initial conditions are 
v
V
C
( )
0

=
oo
C
o
dv
dt
I
C
and
(
)
.
0

=
But we need the initial conditions at t 
=
0
+
since the differential equation being solved is valid only for 


0
+
. There is no impulse current flowing into the capacitor in this circuit. And there is no impulse voltage 
appearing across inductor in this circuit. Hence the initial conditions at t 
=
0
+
are the same as at t 
=
0
-


=
=
+
+
v
V
dv
dt
I
C
C
o
C
o
( )
.
(
)
0
0
and
Applying these two initial connditions on the solution,
Solving fo
1
1
2
A
A V
A
A
I
C
o
o
+
=
+
=
2
1
2
a
a
rr 
and
A
A
1
2
,
and
A
V
I
C
A
I
C
V
o
o
o
o
1
2
2
1
2
1
2
1
=


=


a
a
a
a
a
a


12.4


SeriesandParallel
RLC
Circuits
Substituting for A
1
and A
2
in the equation for v
C
(t) and collecting terms we get,
v t
V
e
e
I
C
e
e
t
C
o
t
t
o
t
t
( )
=






+
a
a
a
a
a
a
a
a
a
a
2
1
2
1
2
1
1
2
1
2
0
V for 
wherre
a
1 2
2
2
2
4
1
,
= −
±

R
L
R
L
LC
(12.1-4)
We observe that there are two natural response terms with exponential format in the solution. We 
observe further that there are two contributions in the zero-input response for v
C
(t) – one from initial 
energy storage in the capacitor and the second from initial energy storage in the inductor.
When we take a square root, we need to be concerned about the sign of quantity under the radical! 
Therefore, we identify three situations based on the sign of quantity under the radical in the expressions 
for 
a
1
and 
a
2
.
case-1 
`
1
 and 
`
2
 real, negative and distinct
This case is a straightforward one and occurs when R
L
C
>
2
. The two distinct roots of characteristic 
equation of the homogeneous differential equation are real and negative and are arranged on either 
side of R/2L magnitude-wise. The equation for v
C
(t) is as given in Eqn. 12.1-4. The capacitor voltage 
in this case is an additive mixture of two decaying exponential functions – one with a time constant 
that is less than L/2R s and another with a time constant that is more than L/2R s. Not only the 
capacitor voltage but also all the circuit variables will have these two exponential functions in them. 
The following example illustrates this case. A 0.5 F capacitor 1 H inductor are assumed in the example. 
1 H inductance is a practical value. However, 0.5 F capacitor is hard to come by in practice. Capacitors 
used in practical engineering usually range from pF to mF. A 0.5 F capacitor is perfectly legitimate in 
a numerical example aimed at illustrating theoretical concepts – at least it keeps the numbers simple!
example: 12.1-1
A series RLC circuit has R 
=

W
L 
=
1 H and 
=
0.5 F. The capacitor is initially charged to 2 V and 
the initial current in the inductor is 1 A at t 
=
0
-
. Find the zero-input response of capacitor voltage and 
circuit current.
Solution
The differential equation governing the capacitor voltage v
C
(t) is
d v
dt
dv
dt
v
t
C
C
C
2
2
3
2
0
0
+
+
=

+
for
The characteristic equation is 
g
g
2
3
2 0
+
+ =
and its roots 
a
1,2 
=
-
1 s
-
1
and –2 s
-
1
.
Therefore, the general solution for v
C
(t
=
A
1
e
-
t
+
A
2
e
-
2t
V. Applying initial conditions at t 
=
0
+
,
A
1
+
A
2
=
2 V and 
-

×
 A
1
+
-

×
 A
2
=
1 A/0.5 F 
=
2 V/s
\
 A
1
=
6 and A
2
=
-
4
\
v
C
(t
=
e
-
t
-
e
-
2t
V for t 

t 
=
0
+
.


TheSeries
RLC
Circuit–Zero-InputResponse

12.5
And i(t
=
C dv
C
/dt 
=
-
e
-
t
+
e
-
2t
A for t 

t 
=
0
+
.
The capacitor voltage and circuit current contain two decaying exponential transients with time 
constants of 1 s and 0.5 s. Both exponential terms decay down to zero thereby taking the circuit to 
zero-energy condition in about 5 to 6 s.
The circuit contained a total initial energy storage of 1.5 J (1 J in the capacitor and 0.5 Joule in the 
inductor). Both capacitor voltage and current inductor current approach zero as 
→ ∞
. Therefore total 
energy storage in the circuit goes to zero with time. Then the total energy dissipated in the resistor 
from t 
=
t 
=
0
+
to 

must be 1.5 J. This is verified as follows.
Total energy dissipation in 3 resistor 

=
× −
+


3
3
4
2

e
e
t
t
(
))
(
)
2
0
2
4
3
0
2
0
4
0
3
9
16
24
27
2
12










=
×
+

= −

dt
e
e
e
dt
e
e
t
t
t
t
t




+
=
24
1 5
3
0
e
J
t
.
The time-variation of all the circuit variables under 
zero-input response conditions is shown in Fig. 12.1-2.
Both the natural response terms are decaying 
exponential functions. But that, by no means, implies that 
all the circuit variables will decay monotonically from t 
=
0
+
onwards. Notice that the voltage across capacitor 
increases from its initial value of 2 V to 2.25 V first 
before it starts decaying. This is so because the initial 
current in inductor charges up the capacitor further.
The difference between two decaying exponential 
functions can exhibit a maximum or minimum. In the 
present example, v
C
(t) reaches a maximum and i(t) reaches 
a minimum before they settle down to zero as t 
→ ∞


Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   352   353   354   355   356   357   358   359   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish