Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  Frequency response from phasor equivalent circuit



Download 5,69 Mb.
Pdf ko'rish
bet365/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   361   362   363   364   365   366   367   368   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

12.9.2 
Frequency response from phasor equivalent circuit
We remember at this point that phasor analysis is another way to arrive at the sinusoidal steady-state 
response of linear circuits. We verify the result in Eqn. 12.9-2 by employing phasor analysis. The 
series RLC circuit with unit amplitude sinusoidal excitation and its phasor equivalent circuit are shown 
in Fig. 12.9-1.

+

v
R
(
t
)
v
L
(
t
)
v
C
(
t
)
i
(
t
)
C
(a)
sin 
t
R
L


+
+
+
ω

+

v
R
(
j
)
ω
v
C
(
j
)
ω
v
L
(
j
)
ω
i
(
j
)
ω
j L
ω

C
(b)
1
R


+
+
+

0

2
1
Fig. 12.9-1 
Series
RLC
circuitandphasorequivalent


12.28


SeriesandParallel
RLC
Circuits
The frequency-response function for any circuit variable is the ratio of output phasor to the input 
phasor. This ratio will be a complex ratio and its magnitude part will give the amplitude ratio and 
its angle part will give the phase angle by which the output sine wave leads the input sine wave 
under steady-state condition. We obtain three phasor ratios for the voltage variables in this circuit by 
employing voltage division principle in a series circuit.
V
j
V j
j C
R
j L
j C
LC
j RC
LC
LC
j R L
C
S
n
(
)
(
)
w
w
w
w
w
w
w
w
w
w
=
+
+
=

+
=

+
=
1
1
1
1
1
1
2
2
22
2
2
2
(
)
w
w
xw w
n
n
j

+
.
This ratio can be written in polar form as 
V
j
V j
C
S
n
n
n
C
C
n
n
(
)
(
)
(
)
tan
w
w
w
w
w
x w w
f
f
xw w
w
=

+

= −

2
2
2 2
2
2
2
1
4
2
where
22
2

w
rad (12.9-3)
We see that the frequency-response obtained by solving the differential equation is the same as 
the one obtained by employing phasor equivalent circuit as expected. Similar evaluation of phasor 
ratios leads to the frequency-response functions for the remaining two voltage variables in the circuit. 
They are,
V j
V j
j
j
R
S
n
n
n
n
n
n
(
)
(
)
(
)
(
)
w
w
xww
w
w
xw w
xww
w
w
x w w
=

+
=

+
2
2
2
4
2
2
2
2 2
2
2
2


=



f
f
p
xw w
w
w
R
R
n
n
where
rad
2
2
1
2
2
tan
(12.9-4)
V j
V j
j
j
L
S
n
n
n
n
L
(
)
(
) (
)
(
)
w
w
w
w
w
xw w
w
w
w
x w w
f
=
( )

+
=

+

2
2
2
2
2
2 2
2
2
2
2
4
whhere
rad
f
p
xw w
w
w
L
n
n
= −


tan
1
2
2
2
(12.9-5)
The remaining variable, i(t), is directly related to v
R
(t) and hence its frequency-response need not 
be obtained separately. 
12.10 
reSonAnce In SerIeS 
RLC
 cIrcuIt
The ratio of voltage appearing across an element in a series circuit to the source voltage is equal to 
the ratio between the phasor impedance of that element to sum of all the impedances in series. The 
impedance of an inductor increases linearly with angular frequency and impedance of a capacitor 
decreases in inverse proportion to angular frequency. We use these basic principles to discuss the 
shape of frequency-response plots for the three possible outputs in the series RLC circuit.
12.10.1 
the Voltage Across resistor – the Band-pass output
At zero frequency (i.e., for DC steady state) the inductor appears as a short and capacitor appears as 
open. Therefore, the magnitude part of frequency-response is 0 for v
R
(t), and v
L
(t) and 1 for v
C
(t) at 
this frequency.


ResonanceinSeries
RLC
Circuit

12.29
The inductor appears as impedance of infinite magnitude and capacitor appears as impedance of 
zero magnitude as 
w
increases without limit. Therefore, all the high frequency voltage will appear 
across the inductor. Thus, as 
w
 


, the magnitude part of frequency-response is 0 for v
R
(t), i(t), and 
v
C
(t) and 1 for v
L
(t). 
The sign of impedance of inductor is positive and the sign of impedance of capacitor is negative 
for any 
w
. Thus, they tend to cancel each other partially in the sum at all frequencies. The cancellation 
is 100% at one particular frequency. The value of frequency at which this happens is when 
w
L 
=
1/
w
C 

w
=
1/

(LC). But this frequency was named as undamped natural frequency earlier. Thus, we 
conclude that, the reactance part of the total series impedance of a series RLC circuit goes to zero at 
w
n
and the circuit appears purely resistive under steady-state conditions at that frequency. Therefore, 
the current in the circuit at that frequency will be v
S
(t) /R and will be in phase with the input voltage. 
The power factor of the circuit will be unity at that frequency. 
The cancellation between the inductive reactance and capacitive reactance is only partial at all 
other frequencies. Hence, the magnitude of total series impedance of the circuit at any frequency 
other than 
w
n
will be more than R and amplitude of current will be less than 1/R A (assuming unit 
amplitude excitation) at all other frequencies. Thus, in a series RLC circuit, the impedance is a 
minimum and amplitude of current (and hence amplitude of voltage across the resistor) is a maximum 
at 
w
n
Moreover, the current in the circuit will be at unity power factor at that frequency. This condition 
in the series RLC circuit is called the resonance condition and the frequency at which this happens 
is called the resonant frequency. Obviously, in a series RLC circuit, the resonant frequency and the 
undamped natural frequency are the same.
• 
Ingeneral,inacircuitexcitedbyasinglesinusoidalvoltagesource(currentsource)
acrossapairofterminals,
resonance
istheconditionunderwhichthecurrentdrawn
attheterminals(voltageappearingacrosstheterminals)isinphasewiththesource
voltage (current). Equivalently,
resonance
 is the condition under which the input
impedance(admittance)offeredtothesinusoidalsourceisresistive.
• 
Resonance frequency is the frequency of sinusoidal excitation for which the circuit
presentspureresistiveimpedance.Itisequaltotheundampednaturalfrequencyof
thecircuit.Itis
1
2
p
LC
Hz
forseries
RLC
circuit.
• 
Inaseries
RLC
circuitunderresonancecondition,
(a) Theinputimpedanceisaminimumandispurelyresistiveat
R
Ohms.
(b) Theinputcurrentisinphasewithappliedvoltage.Thepowerfactorisunity.
(c) 
For fixed amplitude of excitation, the circuit draws maximum amplitude current
whentheexcitationfrequencyisresonancefrequency.Thepowerdissipatedinthe
resistorwillbeamaximumunderthiscondition.
(d) 
The voltage across resistor will be equal to the applied voltage in amplitude and

phase.
• 
Theinputimpedanceofaseries
RLC
circuitiscapacitivefor
w
<
w
n
andinductivefor
w
>
w
n
.Thecircuithas
lead
powerfactorfor
w
<
w
n
and
lag
powerfactorfor
w
>
w
n
.
The impedance of series RLC circuit can be expressed in terms of the critical resistance R
L
C
cr
=
2
,
normalised frequency x
n
=
w
w
and damping factor 
x
=
R
R
cr
as follows.


12.30


SeriesandParallel
RLC
Circuits
Z
= +
+
= +

= −

=
=

R
j L
j C
R
j
LC
C
R
j
L
x
x
x
R
j
R
n
n
cr
w
w
w
w
w
w
w
x
1
1
1
2
2
(
)
where
ccr
n
cr
cr
cr
x
x
L
L
C
R
L
C
R
R
R
x
2
1
2
1
2
2
2 2

=
=
=





=
+


w
x
x
,
and
Z
(
)
44
2
x
The magnitude of series RLC circuit impedance normalised to the base of critical resistance of the 
circuit is shown in Fig. 12.10-1. The impedance reaches a minimum value at resonance frequency for 
all damping factors. 
0.2
0.2
0.4
0.6
0.8
1
1.2
1.4
|Z|
R
cr
ω
/
ω
n
0.4 0.6 0.8
1 1.2 1.4 1.6 1.8
2
x
=
0.05
x
=
0.2
x
=
0.4
Fig. 12.10-1 
NormalisedimpedanceofaseriesRLCcircuitforvariousdampingfactors
The amplitude of voltage appearing across the resistor in a series RLC circuit under resonance 
condition is same as the amplitude of input. Therefore, the magnitude of frequency-response for 
v
R
(t) begins with zero at zero frequency, goes to unity at 
w
n
and tapers down to zero as 
w
 



The total reactance in a series RLC circuit is capacitive for 
w
<
w

and it is inductive for 
w
>
w
n

Therefore, the voltage across resistor leads the input voltage for frequencies lower than resonant 
frequency and lags the input voltage for frequencies higher than resonant frequency. Thus, the phase 
of frequency-response of v
R
(t) starts at 90
°
at 
w
 
=
0, becomes zero at 
w
=
w
n
and decreases to –90
°
as 
w
→∞
.
Equation 12.9-4 confirms all these conclusions. The shape of magnitude response and phase 
response for the voltage across resistor is plotted against 
w/w
n
ratio for various damping factors in 
Fig. 12.10-2.


ResonanceinSeries
RLC
Circuit

12.31
0.2
0.2
0.4
0.6
0.8
1
Gain
Phase (rad)
= 1
= 1
= 2
= 2
ω
= 0.2
= 0.2
= 0.02
= 0.02
1.5
1
0.5
–0.5
–1
–1.5
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
2
ω
n
ω
ω
n
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
Fig. 12.10-2 
Frequencyresponseofresistorvoltageinaseries
RLC
circuit
The magnitude curve is found to become narrower as the damping ratio is reduced. The resistor voltage 
in a series RLC circuit exhibits the so-called band-pass characteristic. A frequency-response is said to be 
of band-pass nature when it attenuates low-frequency sinusoids and high-frequency sinusoids considerably 
and passes on mid-frequency sinusoids preferentially. Resistor voltage in a series RLC circuit is a band-
pass output for all values of damping factor – i.e., even an over-damped series RLC circuit behaves as a 
band-pass filter if the output is taken across the resistor. However, the band-pass characteristic becomes 
sharper and sharper when the damping in the circuit is reduced. That is, the circuit becomes highly 
frequency-selective as 
x
approaches zero. In conclusion, series RLC circuit with output taken across R is a 
narrow band-pass filter for low values of 
x
and it is a wide band-pass filter for high value of 
x
.
Another point of great significance is that the output in this band-pass filter is in-phase with the input 
at a frequency that is at the centre of the band – i.e., at 
w
n
. Output signal undergoes a phase change by 
about 180
°
when its frequency varies in a small band around 
w
n
if 
x
is very small. See the phase curve for 
x
 
=
0.02 in Fig. 12.10-2. This kind of rapid variation of phase of output over a small frequency range has 
considerable negative implications in designing control systems for systems that involve RLC circuits.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   361   362   363   364   365   366   367   368   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish