Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet373/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   369   370   371   372   373   374   375   376   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 12.11-1 
A parallel RLC circuit with 
=
10 mH, C 
=
100 
m
F, 
=
 2.5 
W
V
o
=
10 V and I
o
=
-
1 A is allowed 
to execute its free-response from t 
=
0. Obtain and plot all the circuit variables as functions of time. 
Solution
Undamped natural frequency, 
rad/sec
Critical resi
w
n
LC
=
=
1
1000
sstance
Damping factor
Natural frequen
1
2
=
=

=
=

L
C
5
5 2 5 2

x
/ .
ccies (
and 
= − ±

= −
×

×
x
x
w
2
3
3
1
0 268 10
3 732 10
)
.
.
n
Hence, this circuit is an over-damped one with two real negative natural frequencies corresponding 
to two time constants of 3.732 ms and 0.268 ms. There is no forced response component. Therefore 
total response for all variables will contain sum of two decaying exponential functions with time 
constants calculated above.

=
+

×

×
i t
A e
A e
L
t
t
( )
.
.
1
0 268 10
2
3 732 10
3
3
(12.11-1)
A
1
and A
2
have to be evaluated from initial conditions. One of the initial conditions – inductor 
current – can be directly applied on this equation. The initial current given is specified at t 
=
0
-
. But 
since there is no impulse voltage in this circuit, the inductor current can not change instantaneously. 
Therefore, the value of inductor current at t 
=
0
+
and at t 
=
0
-
will be the same. Applying this initial 
condition at t 
=
0
+
on the assumed solution gives one equation on A
1
and A
2
.
A
A
I
o
1
2
1
+
= = −
The second initial condition, the value of capacitor voltage at t 
=
0
-
, can be employed to obtain the 
second equation needed to solve for A
1
and A
2
. We recognise that (i) in a parallel RLC circuit, voltage 
is the common variable and hence the initial value of voltage across inductor is same as V
o
and (ii) the 
voltage across an inductor is proportional to first derivative of current.

=
=
+
+
+
di t
dt
v t
L
v t
L
L
L
C
( )
( )
( )
(
)
(
)
0
0
0
But
if there is no impulse current f
v t
L
v t
L
C
C
( )
( )
(
)
(
)
0
0
+

=
llow in the capacitor at
A/sec
t
di t
dt
V
L
L
o
=

=
+
0
0
( )
Differentiate the assumed response in Eqn. 12.11-1 and apply this initial condition to get the second 
equation on A
1
and A
2.


12.46


SeriesandParallel
RLC
Circuits


=
=
268
3732
10 0 01 1000
1
2
A
A
/ .
A/sec
Solving for A
1
and A
2

A

=
-
0.789 and A

=
-
0.211

= −


=


+
i t
e
e
t
v t
L
di t
d
L
t
t
L
( )
.
.
( )
( )
0 789
0 211
0
268
3732
A for
tt
e
e
t
i t
C
dv t
dt
t
t
C
=
+

=
= −


+
2 11
7 89
0
0 05
268
3732
.
.
( )
( )
.
V for
665
2 945
0
0 846
268
3732
268
e
e
t
i t
v t
R
e
t
t
R
t





=
=
+
.
( )
( )
.
A for
33 156
0
3732
.
e
t
t

+

A for
The sum of the three currents should be zero and it is verified.
4
3.5
3
Amps
Time
(ms)
2.5
2
1.5
1
1
0.5
–0.5
–1
–1.5
–2
–2.5
–3
i
R
(
t
)
i
L
(
t
)
i
C
(
t
)
Volts
Time
(ms)
3
2
1
6
5
4
3
2
1
7
8
9
10
v
(
t
)
Fig. 12.11-2 
CurrentandvoltagewaveformsforExample:12.11-1
Figure 12.11-2 shows the three currents and the common voltage waveforms. The two exponential 
functions that make the voltage waveform are also shown. In all cases, the exponential with lower 
time constant (0.268 ms) dominates the initial behaviour, whereas the exponential with the higher time 
constant (3.732 ms) affects the behaviour after 1ms.
example: 12.11-2
A parallel RLC circuit with 
=
1 mH, C 
=
1000 
m
F, 
=
 2.5 
W
V
o
=
0 V and I
o
=
0 A is driven by a 
single pulse of current of amplitude 100 A lasting for 10 
m
s. Obtain and plot all the circuit variables 
as functions of time.
Solution
A single rectangular pulse can be expressed as sum of two step functions. Let the pulse height be I
pulse duration be t
o
and let it start at t 
=
0. Then this pulse can be expressed as I[u(t)
-
u(t
-
t
o
)] where 
u(t
-
t
o
) is a unit step which is delayed by t
o
s in the time-axis. Thus, what we have at hand looks like a 
step-response problem.


TheParallel
RLC
Circuit

12.47
Undamped natural frequency 
rad/sec
Critical resis
w
n
LC
=
=
1
1000
ttance
Damping factor
Natural fre
1
2
=
=

=
=

L
C
0 5
0 5 2 5 0 2
.
. / .
.

x
qquencies (
and
= − ±

= −
+


x
x w
j
j
j
n
1
200
979 8
200
979 8
2
)
.
.
Hence the circuit is an under-damped one and its natural response terms will be exponentially 
damped sinusoidal functions of time.
We note that the time constant of the exponential which damps the sinusoid is 1/200 
=
5 ms. The 
period of the sinusoid term will be 2
p
/ 979.8 
=
6.413 ms. Observe that the duration of current pulse 
applied to the circuit is only 0.01 ms. It is very small compared to 5 ms and 6.413 ms. An approximate 
solution to the circuit problem can usually be obtained under such situations by approximating 
the driving pulse as an impulse with an area content equal to the area content of the pulse being 
approximated. The pulse can be arbitrary in shape – only that the pulse duration has to be much less 
than the characteristic times involved in the circuit natural response. Hence this problem can be solved 
by obtaining the impulse response and scaling it by the magnitude to the impulse used to approximate 
the rectangular pulse, i.e., 100 A 
×
10 
m

=
1000 
m
C.
No portion of an impulse current can flow through the resistor in a parallel RLC circuit since that 
will result in impulse voltage across the combination. Capacitor will not let that happen. No portion 
of impulse current can flow through the inductor since inductor does not even permit a finite change 
in current over infinitesimal time duration. Hence, the entire input impulse current has to flow through 
the capacitor at t 
=
0. Therefore, the capacitor voltage changes instantaneously to 1000 
m
C/1000 
m

=
1 V from 0. The impulse current source is open (because a current source which is zero-valued is an 
open-circuit ) for all t 

0
+
. The only effect of impulse excitation is that it changes the initial condition 
abruptly. The subsequent response is the free-response of the circuit.
Now the problem has got reduced to finding the zero-input response (i.e., free-response) of the 
circuit with V
o
=
1 V and I
0
=
0.
i t
e
A
t A
t
i
di t
L
t
L
L
( )
sin
.
cos
.
( )
( )
=
+
(
)
=

+
200
1
2
979 8
979 8
0
0
A
and
ddt
V
L
o
(
)
0
1000
+
=
=
A/s
Differentiating i
L
(t) and applying initial conditions, A
A
A
2
1
2
0
979 8
200
1000
=

=
and
.
.
Solving for A
1
and A
2
A
1
=
1.0206 and A
2
=
0

=

=
=

+

i t
e
t
t
v t
L i t
e
L
t
L
( )
.
sin
.
( )
( ( ))

1 0206
979 8
0
200
2
A for
000
200
0 204
979 8
979 8
1 0206
979 8
0
t
t
t
t
e
t
(
.
sin
.
cos
. )
.
cos(
.
.

+
=
+

V
22
0
rad V for
)
t

+
i t
C v t
e
t
t
C
t
( )
( ( ))
.
cos(
.
.
) sin(
.

=
=

+

+

200
0 204
979 8
0 2
979 8
0
rad
..
)
.
sin(
.
.
)
( )
2
1 0206
979 8
0 4
0
200
rad
rad A for
[
]
= −
+


+
e
t
t
i t
t
R
==
=
+


+
v t
R
e
t
t
t
( )
.
cos(
.
.
)
0 408
979 8
0 2
0
200
rad A for
Figure 12.11-3 shows the current and voltage waveforms.


12.48


SeriesandParallel
RLC
Circuits
–0.2
0.2
1
2
3
4
5
6
7
7
8
Time (ms)
Amps
Volts
v
(
t
)
i
L
(
t
)
i
C
(
t
)
i
R
(
t
)
Exponential
envelope of 
v
(
t
)
10
0.4
0.6
0.8
1
–0.4
–0.6
–0.8
–1
Fig. 12.11-3 
CurrentandvoltagewaveformsforExample:12.11-2

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   369   370   371   372   373   374   375   376   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish