114
3)
(
) (
)
-
-
+
3
3
1
1 ;
x
x
4)
(
)
(
)
-
+
+
-
2
2
3
5 1
.
x
x
Tenglamani yeching
(378
—
379):
378.
1)
(
)
-
-
=
2
2
16
4
5
15;
x
x
3)
(
)
(
)
-
-
+
-
= -
2
5
3
5
1
20;
x x
x
2)
(
)
-
-
=
2
2
64
3 8
87;
x
x
4)
(
) (
)
-
-
+
=
2
2
2
3
2
3
12.
x
x
379.
1)
(
) (
)
-
-
-
=
2
2
3
1
3
2
0;
x
x
2)
(
) (
) (
)
-
+
-
-
=
2
2
3
2
5;
y
y
y
3)
(
) (
) (
)
+
+
-
+
=
2
3
7
4
0;
x
x
x
4)
(
) (
) (
)
+
-
+
-
=
2
8
9
5
117.
y
y
y
380.
Ifodaning qiymatini toping:
1)
(
)
(
)
-
+
+
+
= -
2
3
1
6
9
3
2
4 3
7 , bunda
1 ;
a
a a
a a
a
2)
(
)
(
)
-
-
-
-
= -
2
2
2
7
2
5
4
3
4 , bunda
;
y
y
y
y
3)
(
) (
)
- -
-
-
= -
2
25
1
5
3
6 , bunda
0,3;
m m
m
m
m
4)
(
) (
)(
)
-
-
+
-
+
= -
2
2
5 .
9
24
7
2
5
3 5
1 , bunda
x
x
x
x
x
381.
x
ni shunday
birhadga almashtiringki, natijada tenglik
bajarilsin:
1)
(
)
-
=
-
+
2
7
4 2
2 8
14
4
25
40
16
;
x
b
a b
a b
b
2)
(
)
+
=
+
+
2
6
3
2
7
25
70
49 ;
x
c
b
b c
c
3)
(
)
+
=
+
+
+
3
3
2
2
3
2
8
12
6
;
a x
a
a b
ab
b
4)
(
)
-
=
-
+
2
2
4
2 3
4 2
5
25
30
9
.
b
x
b
a b
a b
382.
Ifodani ikkihadning kvadrati shaklida tasvirlang:
1)
-
+
2
2
10
25 ;
a
ab
b
3)
+
+
4
2
2
1;
k
k
2)
+
+
2
25 10
;
x x
4)
-
+
2
1,6
0,64.
p
p
383.
x
ni shunday birhadga almashtiringki, natijada ikkihadning
kvadrati hosil bo‘lsin:
115
1)
+
+
2
4
;
a
a x
3)
- +
2
2
36
49 ;
a
x
b
2)
-
+
2
0,5
;
p
p x
4)
-
+
2
6
.
a
ab x
384.
a
ning qanday qiymatlarida
ifodani ikkihadning kvadrati
ko‘rinishida yozish mumkin:
1)
(
) (
)
-
+
+
+
2
2
3
5
4
12
;
x
x
ax
2)
(
) (
)
+
-
-
+
2
2
17
10
15
8
?
x
x
ax
385.
Isbot qiling:
1)
(
) (
)
-
=
-
2
2
;
a b
b a
4)
(
)
(
)
-
= -
-
3
3
;
a b
b a
2)
(
) (
)
- -
=
+
2
2
;
a b
b a
5)
(
)
+
=
+
+
+
3
3
2
2
3
3
3
;
a b
a
a b
ab
b
3)
(
) (
)
(
)
- -
+
= -
+
2
;
a b
a b
a b
6)
(
)
-
=
-
+
-
3
3
2
2
3
3
3
.
a b
a
a b
ab
b
Kvadratlar ayirmasi formulasi
Ikki son yig‘indisini ularning ayirmasiga ko‘paytiramiz:
(
)(
)
+
-
=
-
+
-
=
-
2
2
2
2
,
a b a b
a
ab ab b
a
b
ya’ni
(
)(
)
2
2
.
a b a b
a
b
+
-
=
-
(1)
(
)(
)
2
2
.
a
b
a b a b
-
=
-
+
(2)
Ikki son kvadratlarining ayirmasi shu sonlar ayirmasi
bilan ular yig‘indisining ko‘paytmasiga teng.
(1) va (2)
tenglikda
a
,
b
istalgan sonlar yoki algebraik ifo-
dalardir, masalan:
(
)(
)
(
)(
)
(
)
(
)(
)
2
2
2
4 2
2 4
2
2
2
2
2
1)
3
3
9 ;
2) 4
25
2
5
2
5
;
3)
16
4
4 .
nm
k nm
k
n m
k
a b
a b
a b
ab
a b
ab
a b
a b
a b
+
-
=
-
-
=
+
-
+
-
=
+ -
+ +
22-
116
(2) formulaning geometrik talqini.
(1)
formula ham
qisqa ko‘paytirish formulasi
deyiladi.
Uni hisoblashlarni soddalashtirish uchun qo‘llaniladi.
Masalan:
(
)(
)
(
)(
)
×
=
+
-
=
- =
×
=
-
+
=
-
=
- =
2
2
1) 63 57
60 3 60 3
3 600 9 3 591;
2) 98 102
100 2 100 2
100
2
10000 4 9 996.
(2)
tenglik
kvadratlar ayirmasi formulasi
deyiladi. U ko‘p-
hadlarni ko‘paytuvchilarga ajratishda qo‘llaniladi.
Masalan:
(
) (
)
( )
(
)
(
) (
)
- =
-
=
-
+
-
=
-
=
-
+
2
2
2
2
2
4
2
2
2
2
1)
9
3
3
3 ;
2) 4
0,64
2
0,8
2
0,8
2
0,8 ;
a
a
a
a
b
c
b
c
b
c
b
c
(
)
(
) (
)
(
) (
) (
)(
)
(
)(
)
-
- =
- -
- +
+
-
-
=
+ - +
+ + -
=
=
+
+ -
2
2
2
3)
1
1
1 ;
4)
2
.
a b
a b
a b
a b
a c
a b a c a b a c
b c
a b c
(1)
formuladan foydalanib, ko‘paytirishni bajaring
(386
—
394):
386.
1)
(
)(
)
+
-
;
c d c d
3)
(
)(
)
+
-
;
a c c a
2)
(
)(
)
+
-
;
p q p q
4)
(
)(
)
-
+
;
m n m n
M a s h q l a r
S
ABCD
=
a
2
;
S
AEFG
=
b
2
;
S
GFEBCD
=
S
EBHL
;
S
GFEBCD
=
a
2
-
b
2
;
S
EBHL
= (
a
-
b
)(
a + b
).
B
a
C
b
H
a
2
F
L
M
a
-
b
b
2
E
A
G
D