№
90
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-6; Fan bo’limi-2; Qiyinlik darajasi-1;
Quyidagi kvadratk formalardan qaysilari ekvivalеnt?
3
2
2
1
x
x
x
f
;
2
3
2
1
y
y
y
g
;
2
3
2
1
z
z
z
q
.
f
ва
g
g
ва
q
Hammalari o`zaro ekvivalеnt
f
ва
q
№
91
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-5; Fan bo’limi-2; Qiyinlik darajasi-1;
Quyidagi matritsalardan qaysi biri normal Jordan shaklida?
24
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
1
0
№
92
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-2;
)
41
(mod
14
5
x
taqqoslamani yeching
2
,
25
2
1
x
x
8
,
12
2
1
x
x
9
,
7
2
1
x
x
22
,
35
,
24
,
27
4
3
2
1
x
x
x
x
№
93
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-2;
Quyidagi matritsalardan qaysi birini diagonal ko`rinishga kеltrish mumkin?
2
2
1
0
4
1
0
4
0
2
0
2
0
2
0
0
0
2
5
4
4
4
4
6
2
3
5
25
2
1
2
0
4
4
0
1
0
№
94
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-6; Fan bo’limi-2; Qiyinlik darajasi-2;
f(x)= x
4
+x
3
-7x
2
-x+6 va g(x)= x
4
-5x
2
+4 ko’phadlarni umumiy bo’luvchisini toping.
x
3
-7x
2
-x+2
x
4
-3x
2
-x+2
x
5
-+3x
2
-x-2
x
3
-2x
2
-x+2
№
95
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-4; Fan bo’limi-2; Qiyinlik darajasi-1;
Quyidagi shartlardan qaysinisi bajarilganda AB=AC tеnglikdan B=C tеnglikning o`rinliligi kеlib chiqadi?
0
det
C
0
det
B
0
det
A
A simmеtrik matritsa bo`lsa
№
96
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-4; Fan bo’limi-2; Qiyinlik darajasi-1;
R[x] ko`phadlar xalqasida 2x
4
-3x
3
+4x
2
-5x+6 ko`phadni x
2
-3x+1 ko`phadga bo`lganda xosil bo`ladigan bo`linma q(x) va
qoldiq r(x) topilsin
q(x) = 5x
2
-15x+34, r(x) = 72x - 62
q(x) = 5x
2
+15x+34, r(x) =-72x - 62
2x
2
+3x+11, 25x-5
q(x) = 5x
2
-15x+34, r(x) =72x + 62
№
97
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-1;
)
5
(mod
0
2
2
x
x
taqqoslama nechta yechimga ega
2
5
1
3
№
98
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
26
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-1;
Yig`indini hisoblang: Re(1+2
i
) + 15
i
+ 4 – Im(1+2
i
)(бунда Re(
а
+
вi)=а
, Im(
а
+
вi
) =
в
3 -
15
i
3+
15
i
8+
15
i
6+
15
i
№
99
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-6; Fan bo’limi-2; Qiyinlik darajasi-1;
Еvklid fazosidan olingan ixtyoriy
n
2
1
x
...,
,
x
,
x
o`zaro ortogonal vеktorlar uchun quyidagi munosabatlardan qaysinisi
o`rinli
?
2
2
2
2
1
2
2
1
...
....
n
n
x
x
x
x
x
x
2
2
2
2
1
2
2
1
...
....
n
n
x
x
x
x
x
x
2
2
2
2
1
2
2
1
...
....
n
n
x
x
x
x
x
x
Kеltrilgan munosabatlarning hеch biri o`rinli bo`lmasligi mumkin
№
100
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-1;
Haqiqiy sonlar maydonida х
3
–8 kophadni keltrilmaydigan ko’phadlar ko’paytmasi ko’rinishida ifodalang.
(2x-2)(x2+2x+4)
(x+2)(3x2+2x+4)
(x+2)(x2-2x-4)
(x-2)(x2+2x+4)
№
101
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-5; Fan bo’limi-1; Qiyinlik darajasi-1;
{
3
x
−
y
+
z
=
12
x
+
2
y
+
4
z
=
6
5
x
+
y
+
2
z
=
3
tengslamalar sistemasining yechimini toping.
0,
2,
3
x
y
z
x=0 ,y=-7, z=5
.
1,
1,
4
x
y
z
0,
0,
2
x
y
z
.
27
№
102
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-1;
A=
(
1 1
2 0
)
matritsaga teskari matritsani toping.
1
0 0
1 1
A
1
1 1
1 1
A
A
-1
=
(
0
1
2
1
−
1
2
)
1
2
2
1
1
A
№
103
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-1;
Determinantni hisoblang:
|
0 1 2
1 3 0
5 3 1
|
- 25
.
20
25
0
№
104
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-1; Fan bo’limi-1; Qiyinlik darajasi-1;
A
(
1,
π
2
)
va
5 , 0
B
qutb koordinatalari bilan berilgan bo’lsa,
AB
kesmaning uzunligini toping.
√
6
4
2
5
№
105
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-1;
-x-y+2=0va
1 0
x y
to’g’ri chiziqlar orasidagi burchakni toping
2
28
4
3
6
№
106
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-5; Fan bo’limi-1; Qiyinlik darajasi-1;
Giperbolik silindrning kanonik tenglamaini ko’rsatng
2
2
2
2
1
x
y
a
b
2
2
y
px
2
2
2
2
1
x
y
a
b
2
2
2
2
0
x
y
a
b
№
107
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-1; Fan bo’limi-1; Qiyinlik darajasi-1;
va
ning qanday qiymatlarida
⃗
a
=3
⃗
i
−
2
⃗
j
+
α
⃗
k
va
8
4
b
i
j
k
⃗
⃗
⃗
⃗
vektorlar kollinear bo’ladi
3,
4
2,
5
2,
5
3,
3
№
108
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-1;
Tenglamalardan qaysi biri giperbola tenglamasi bo’ladi
2
2
4
4
x
y
2
4
x
y
2
2
4
4
x
y
2
2
4
0
x
y
№
109
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-1;
9x
2
+25y
2
=225 ellipsning fokus nuqtalarining koordinatalarini toping
29
1
2
( 1, 0),
(1, 0)
F
F
1
2
( 2, 0),
(2, 0)
F
F
1
2
( 3, 0),
(3, 0)
F
F
F
1
(4;0) , F
2
(-4; 0)
№
110
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-2; Fan bo’limi-2; Qiyinlik darajasi-1;
ning qanday qiymatlarida quyidagi tekisliklar perpendikulyar bo’ladi:3x-ay-3z+8=0va6x+9y+7=0
1
5
2
3
№
111
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-5; Fan bo’limi-2; Qiyinlik darajasi-1;
Quyidagi nuqtalardan qaysi biri
2
2
2
4
4
19
x
y
z
ellipsoidga tegishli
(2 2; 1; 1)
(1; 1; 1)
(1; 2; 1)
( 2; 0; 3)
№
112
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-4; Fan bo’limi-2; Qiyinlik darajasi-1;
Agar
(
1, ;
1, )
ij
A
a
i
m j
n
va
(
1, ;
1, )
ij
B
b i
n j
p
matritsalar berilgan bo’lsa, unda
A
matritsani
B
matritsaga ko’paytrish qоidasini ko’rsatng.
1
(
1, ;
1, )
ij
p
ij
ik kj
k
C A B
c i
p j
p
c
a b
1
(
1, ;
1, )
ij
p
ij
ik kj
k
C
A B
c
i
n j
n
c
a b
1
(
1, ;
1, )
ij
n
ij
ik kj
k
C A B
c i
m j
p
c
a b
1
(
1, ;
1, )
ij
m
ij
ik kj
k
C A B
c i
m j
m
c
a b
Do'stlaringiz bilan baham: |