Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet138/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   134   135   136   137   138   139   140   141   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 5-44.  Code to define an anomaly data set and a normal data set. Then, the 

normal data set is shuffled to ensure random selections, and a new data set named 

novelties is formed

Figure 5-45.  The output of the code in Figure 

5-44

One thing about the KDDCUP data set is that there are a massive amount of entries 

with data values as either miniscule values or as 0. You’ve dealt with massive values 

with the credit card data set, and you know that those values can throw off the training 

process entirely. Likewise, massive amounts of zero values or really tiny data values can 

also hamper the training process.

Chapter 5   Boltzmann maChines



202

Since novelties.head() only displays some of the columns, you’ll have to use 

something else to check every column, so look at the code in Figure 

5-46


.

Figure 5-46.  Code to print all the columns and five rows in the data frame

The parameters are self-explanatory. In the example, all 41 columns are displayed for 

the first 5 rows (Figure 

5-47


 and Figure 

5-48


).

Figure 5-47.  The output from the code in Figure 

5-46

. Notice the massive amount 

of zero values in the columns of the data entries

Chapter 5   Boltzmann maChines




203

While the large amount of zero-value entries might not have affected the isolation 

forest, they will certainly mess with the training process of the RBM, leading to terrible 

AUC scores. Therefore, standardizing all of the values will help the RBM during the 

training process and help it attain proper AUC scores.

You don’t want to standardize the data values for the columns protocol_type, flag, or 

label, so exclude them specifically (see Figure 

5-49


).

Figure 5-48.  The rest of the output continued from Figure 

5-46

. There are still 

many zero values or really small values in each entry

Chapter 5   Boltzmann maChines




204

The output showing the standardized data is shown in Figure 

5-50

, Figure 



5-51

, and 


Figure 

5-52


.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   134   135   136   137   138   139   140   141   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish