Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet141/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   137   138   139   140   141   142   143   144   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 5-64.  Code to check the five-number summary of the anomalous data

Figure 5-65.  Based on the maximum value, you don’t need to filter out any values 

for cost, except for what is an anomaly and what is a normal point

The output should look somewhat like Figure 

5-65

.

Now you can graph the free energy vs. the probabilities for each value in the test set 



separated by their label. Run the code in Figure 

5-66


.

Chapter 5   Boltzmann maChines




211

The output should look somewhat like Figure 

5-67

.

Figure 5-67.  There seems to be a defined separation between the anomalies and 



the normal data points. The anomalies in general seem to have a much higher free 

energy cost and a lower-than-usual probability of occurring

Figure 5-66.  Code to plot the free energy vs. the probability for each entry in the 

test set. All of the anomalies have free energies under 1500, so you can filter out all 

values for cost under 1500 to make the graph easier to visualize

Chapter 5   Boltzmann maChines




212

Once again, the RBM has learned the distribution well enough that there’s a clear 

and defined separation between the anomalies and the normal data entries.

 Summary

In this chapter, we discussed restricted Boltzmann machines and how they can be used 

for anomaly detection. We also explored the application of the RBM to two data sets that 

represented two cases where standardization of the data is necessary for proper training. 

You now know more about what an RBM is, how it works, and how to apply it to different 

data sets.

In the next chapter, we will take a look at anomaly detection using recurrent neural 

networks.

Chapter 5   Boltzmann maChines



213

© Sridhar Alla, Suman Kalyan Adari 2019 

S. Alla and S. K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning,  

https://doi.org/10.1007/978-1-4842-5177-5_6




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   137   138   139   140   141   142   143   144   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish