Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet137/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   133   134   135   136   137   138   139   140   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 5-42.  Using the label encoder on the categorical values in your data frame

Figure 5-43.  The output showing the new data frame with the categorical values 

converted to integer label equivalents

In this data set, the normal data entries comprise an overwhelmingly large 

proportion of the data entries, pretty much drowning out the anomalous data. Not only 

that, but you don’t want to pass in all of the data values into the RBM, so you will create 

a new data frame that contains a portion of normal data entries and all of the anomalous 

data entries. Run the code in Figure 

5-44

.

Chapter 5   Boltzmann maChines




201

As in Chapter 

2

, the normal labels are encoded as 4 so you can use them as the basis 



to separate the normal entries from the anomalies.

Since the data set is so large, the entries are shuffled randomly ten times before a sample of  

50,000 is selected from them. This is to ensure a random selection of values from the entire 

data set instead of having the entries just in the top 50,000. The output is shown in Figure 

5-45

.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   133   134   135   136   137   138   139   140   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish