Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet134/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   130   131   132   133   134   135   136   137   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 5-30.  Code to check the five-number summary of the normal data

The output should look somewhat like Figure 

5-31

.

Chapter 5   Boltzmann maChines




194

Now let’s check the five-number summary of the anomalies (see Figure 

5-32

).

Figure 5-31.  The five-number summary shows that the normal data is right 



skewed, since the values for each quartile are in the negative, while the outlier 

values in the tail bring the mean up into the positives

Figure 5-32.  The code to check the five-number summary for the anomalies

The output should look somewhat like Figure 

5-33

.

Figure 5-33.  Looking at the data, it seems that all of the anomalies are below 250. 



Knowing this, you can now pick a threshold value so only the relevant data is displayed 

on the graph

Chapter 5   Boltzmann maChines




195

Knowing the general distribution of the data, you can pick a threshold value so that 

only relevant data is shown on the graph. You know the majority of the normal data is 

situated around the value zero, so the outliers are irrelevant to you since they won’t show 

up on the graph anyways (a few values for 20,000 won’t show up when compared to tens 

of thousands of values around zero).

And so let’s choose a cutoff point of 250, since the maximum free energy for an 

 anomaly is at around 232. Figure 

5-34

 shows a graph of the free energy vs. the probabilities 



for the test set.

Figure 5-34.  Code to plot the free energies associated with x_test and the 

respective probabilities

Figure 


5-35

 shows the code.



Figure 5-35.  The code to graph the free energies of the data points and their 

probabilities

Chapter 5   Boltzmann maChines




196

The output graph is shown in Figure 

5-36

.

Figure 5-36.  The graph of the free energies vs. the probability of the normal and 



anomaly data points in the test set with costs less than 500

The graph automatically graphs the probabilities of the data points based on 

their free energies, but this isn’t exactly made very clear for you to see. The way the 

probabilities are computed correspond with this line of code:

probs = costs / np.sum(costs)

This essentially takes the individual free energy and divides it by the total free energy 

associated with the whole set.

The RBM seems to have learned the distribution well enough that you can see a 

pretty clear separation between the normal values and the anomalies, although there is 

a bit of an overlap. In any case, the RBM performed pretty well on the credit card dataset 

with an AUC of 95.84%.

Chapter 5   Boltzmann maChines




197


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   130   131   132   133   134   135   136   137   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish