Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet146/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   142   143   144   145   146   147   148   149   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 6-7.  A RNN with tanh activation

Figure 6-8.  Common activation functions

The key idea behind activation functions is to add non-linearity to the data to align 

better with real-world problems and real-world data. In Figure 

6-9


, the top graph shows 

linearity and the bottom graph shows nonlinearity.

Chapter 6   Long Short-term memory modeLS 



220

Clearly, there is no linear equation to handle the nonlinearity so we need an 

activation function to deal with this property. The different activation functions are listed 

at 


https://keras.io/activations/

.

In time series data, the data is spread over a period of time, not some instantaneous 



set such as seen in Chapter 

4

 autoencoders, for example. So not only it is important to look 



at the instantaneous data at some time T, it is also important for older historical data to 

the left of this point to be propagated through the steps in time. Since we need the signals 

from historical data points to survive for a long period of time, we need an activation 

function that can sustain information for a longer range before going to zero. tanh is the 

ideal activation function for the purpose and is graphed as shown in Figure 

6- 10


.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   142   143   144   145   146   147   148   149   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish