Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet154/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   150   151   152   153   154   155   156   157   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 26.  (continued)

Figure 6-27.  Graph of loss in TensorBoard

Figure 


6-28

 shows the plotting of the mean absolute error during the training process 

through the epochs of training.

Chapter 6   Long Short-term memory modeLS 




236

Figure 


6-29

 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Figure 6-28.  Graph of mean absolute error in TensorBoard

Figure 6-29.  Graph of loss of validation in TensorBoard

Chapter 6   Long Short-term memory modeLS 




237

Figure 


6-30

 shows the plotting of the mean absolute error of validation during the 

training process through the epochs of training.

Figure 6-30.  Graph of mean absolute error of validation in TensorBoard

Figure 


6-31

 shows the graph of the model as visualized by TensorBoard.

Chapter 6   Long Short-term memory modeLS 



238

Once the model is trained, you can predict a test dataset that is split into 

subsequences of the same length (time_steps) as the training datasets. Once this is done, 

you can then compute the root mean square error (RMSE).



Figure 6-31.  Graph of the model as visualized by TensorBoard

Chapter 6   Long Short-term memory modeLS 




239

Figure 


6-32

 shows the code to predict on the testing dataset.

RMSE is 0.040, which is quite low, and this is also evident from the low loss from 

the training phase after 20 epochs: loss: 0.0251 - mean_absolute_error: 0.0251 - 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   150   151   152   153   154   155   156   157   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish