I tur xosmas integrallar. Berilgan y=f(x) funksiya [a, +∞) cheksiz yarim oraliqda aniqlangan va ixtiyoriy chekli b≥a uchun [a,b] kesmada integrallanuvchi , ya’ni
integral mavjud bo‘lsin.
1-TA’RIF: y=f(x) funksiyaning [a, +∞) cheksiz yarim oraliq bo‘yicha I tur xosmas integrali deb yuqori chegarasi o‘zgaruvchi F(b) integralning b→+∞ bo‘lgandagi limitiga aytiladi.
y=f(x) funksiyaning [a, +∞) cheksiz yarim oraliq bo‘yicha I tur xosmas integrali
(1)
deb belgilanadi va , ta’rifga asosan,
(2)
kabi aniqlanadi.
Geometrik nuqtai nazardan (1) xosmas integral y=f(x) [f(x)≥0], x=a va y=0 chiziqlar bilan chegaralangan cheksiz shaklning yuzasini ifodalaydi.
2-TA’RIF: Agar (2) limit mavjud va chekli bo‘lsa, unda (1) xosmas integral yaqinlashuvchi, aks holda esa uzoqlashuvchi deyiladi.
(1) xosmas integralni qarashda ikkita masala paydo bo‘ladi.
Do'stlaringiz bilan baham: |