Многоагентные системы



Download 0,64 Mb.
bet12/22
Sana30.04.2022
Hajmi0,64 Mb.
#600356
1   ...   8   9   10   11   12   13   14   15   ...   22
Bog'liq
Городецкий В.И., Многоагентные системы (обзор)

Уровень специфических предметных знаний, в котором содержатся медицинские знания о болезнях, знания о планах управления лечением болезней (“протоколы”), база данных о пациентах (истории болезней) и база данных о доступных ресурсах. Однако предметные знания не содержат какой-либо информации о том, как их следует использовать, здесь представлены только свойства предметной области.

2. Уровень знаний о процедурах вывода; он содержит декларативные правила вывода, которые должны применяться к предметным знаниям о конкретном пациенте, чтобы вывести новые данные. Этот уровень - основной в архитектуре. В свою очередь он подразделяется на компоненты принятия решений в условиях неопределенности, управления задачами и управления кооперацией агентов. Например, модуль управления задачами содержит декларативную схему вывода для управления переходами состояний задачи. Особенности системы вывода решений состоят в том, что она не использует понятия ментального состояния агента (убеждения, желания, намерения) и не использует какой-либо логический язык для вывода, для этого она использует стратегии аргументации в условиях неопределенности. Это означает, что эта архитектура не является BDI-архитектурой.
3. Менеджер задач ответственен за декомпозицию задач на подзадачи и их распределение по соответствующим агентам, а также за управления переходами состояний задач. Управление кооперацией агентов использует механизм, основанный на взаимных обязательствах агентов (“любой агент согласен предпринимать схему действий, которая имеет целью исполнить задачу за подходящее время”), и соглашениях о том, при каких условиях агент вправе отказаться от своих обязательств и как он должен себя вести по отношению к другим агентам, когда такие обстоятельства возникнут.
4. Уровень управляющих знаний, который применяет знания о процессе вывода к предметным знаниям, чтобы генерировать схему вывода, если в рабочую память добавляются новые знания.
Авторы убеждены, что такое функциональное разделение знаний на предметные знания, знания о процедурах вывода и управляющие знания существенно упрощает их представление, повторное использование и эксплуатацию, поскольку эти компоненты могут создаваться и поддерживаться независимо. Кроме того, эта архитектура позволяет просто встраивать программы извлечения знаний, каждая из компонент которых может получаться и модифицироваться независимо друг от друга.
Другие три компоненты рассматриваемой архитектуры - это рабочая память, менеджер коммуникаций и человеко-машинный интерфейс.
Рабочая память служит для запоминания текущих данных, генерируемых уровнем управления, пользователя и менеджера коммуникаций. Типы информации, которая хранится в рабочей памяти, таковы: цели, которые должны быть достигнуты; состояния задач, которые находятся в текущем состоянии процесса выполнения соглашений с другими агентами. Фактически, в привычной нам терминологии, рабочая память есть ни что иное, как доска объявлений.
Менеджер коммуникаций содержит в себе сообщения, которые должны быть посланы другим агентам, представленные на языке коммуникаций с примитивами типа примитивов языка KQML: обратиться с просьбой, принять, отвергнуть, изменить, предложить, проинформировать, запросить данные, отказаться и подтвердить.
Человеко-машинный интерфейс определяет схему взаимодействия между системой и пользователем, поскольку данная многоагентная система не является автономной, что связано с личной ответственностью пользователя за здоровье пациента.
Эту архитектура основана на знаниях, имеет горизонтальную схему взаимодействия уровней. Главная ее особенность в том, что она достаточно сильно ориентирована на приложение.

5.3.4. IDS-архитектура


Эта архитектура возникла [31] в результате комбинирования двух направлений исследований. Первое из них - это логика рассуждений о действиях и изменениях с исходным понятием "населенной (живыми существами) динамической системы" (“Inhabited Dynamic System”-IDS). Второе направление - это построение эффективной реализации интеллектуальной системы.


Архитектура имеет трехуровневую структуру и является гибридной. Полагается, что IDS - система размещается в некотором мире (среде) и состоит из двух базовых частей - “Мыслящей части” (“Я”, “Ego”) и “Машины” (“Подвижной части объекта”, “тела”, “vehicle”). Автор интерпретирует понятие “Мыслящая часть” как интеллектуальную, основанную на знаниях часть автономного агента, его “мозг”, в то время как “машина” - это тело агента, т.е. его бессознательная часть, которая в порядке реакции на восприятие и приказы на исполнение что-то делает. IDS воспринимает внешнюю среду. Используя процесс восприятия, она редуцирует и существенно обобщает воспринимаемую информацию, и посылает выход в “Мыслящую часть”. В свою очередь, “Мыслящая часть” посылает команды на свою подвижную часть, которая их отрабатывает без какого-либо дополнительного управления или изменения, вызывая соответствующие изменения во внешнем мире (см. Рис.11).
Эта идея реализуется в виде трехуровневой архитектуры, представленной на рис.12. Разделение по уровням производится в соответствии с характером тех вычислений, которые на них выполняются. Первый уровень - это уровень процессов, на котором периодически выполняются с заданной частотой некоторые вычисления, а также осуществляется управление процессами восприятия и исполнения. Второй уровень, называемый уровнем ответной реакции, вычисляет ответную реакцию на асинхронные события, которые либо воспринимаются уровнем процессов, либо им генерируются. Уровень анализа выполняет символические рассуждения, такие, как предсказание, планирование и перепланирование, а также является тем местом, где располагается компонента обучения агента. Данная архитектура является типичным представителем многоуровневой архитектуры, которая относительно близка к архитектуре “Touring Machine” и отличается от нее вариантом распределения задач по уровням. Достоинства архитектуры, по мнению автора, следует рассматривать в трех аспектах:

-в ней имеет место явное разделение задач, которые требуют различных концептуальных и вычислительных рамок;


-она позволяет при проектировании использовать различные инструментальные средства (языки, алгоритмы) для упрощения разработки;
-она позволяет поддерживать процесс проектирования простыми программными инструментальными средствами, обеспечивая простоту процесса прототипирования, которыми автор располагает.


5.3.5. WILL-архитектура


Эта архитектура интенсивно использует метафоры и понятия, традиционно применяемые к описанию человеческой интеллектуальной деятельности, что делает ее привлекательной и понятной, но от этого она не становится в чем-то принципиально новой по отношению к другим архитектурам, а, как представляется, только отдаляет возможность ее практической реализации. Однако авторы утверждают, что это наиболее простая архитектура автономного агента. Следует, однако, принимать во внимание, что это архитектура рассчитана на одного агента, который имеет одну цель и его функционирование направляется его собственными мотивами, которые автор называет интересами (“concerns”). Вопрос о методах кооперации и коммуникации агентов такой архитектуры авторы оставляют без внимания. Эта архитектура представлена на рис.13.


Для того, чтобы агент функционировал в мире рационально, ему необходимы различные функции, включая восприятие. Авторы предполагают, что агент имеет для каждой из этих функций отдельный модуль. В частности, они предполагают, что агент имеет Сенсорный блок, Планировщик и Исполнительное устройство в качестве базовых модулей, которые каким-то образом должны быть интегрированы.


Главной проблемой при этом является вопрос о том, как организовать совместную согласованную работу этих модулей, в частности, согласовать взаимодействие потоков информации и потоков управления. Чтобы решить проблему согласованного взаимодействия потоков информации, они предлагают применить нечто вроде схемы “бродкастинга”, когда соединены все входы и все выходы модулей между собой, так что любое сообщение, генерируемое тем или иным блоком становится доступным любому другому блоку. Все эти сообщения собираются в глобальном буфере, который называется Памятью. Все блоки могут читать информацию из Памяти, кроме Сенсоров, и все они могут писать информацию в Память, кроме Исполнительного устройства. Каждый модуль может просто брать информацию из памяти, когда ему это нужно.


Авторы этой архитектуры полагают, что цели системы могут меняться и генерироваться “изнутри” агента, будучи обусловленными некими фундаментальными целями агента, которые авторы называют “интересами“ (“concerns”).

Они определяются как некие предпочтения агента находиться в каких-то состояниях и каких-то состояний избегать. Когда агент получает информацию, которая в соответствии с его интересами отвечает предпочтительному состоянию (скажем, температура среды равна 20 градусов), то генерируется внутренний сигнал о том, что желательно, чтобы в этом состоянии среда оставалась и в будущем. Для каждого состояния внешней среды агент должен уметь оценивать меру его релевантности своим интересам (нечто вроде заряда статического электричества - в объяснении авторов). Это означает, что когда некий модуль обращается к памяти, он “видит“ тот ее фрагмент, который имеет “наибольший заряд“ и обрабатывает этот фрагмент. Наибольшее внимание модуля привлекается к тому событию, с которым агент не знает, что делать.


Авторы утверждают, что главное новшество этой архитектуры в наличии блока Память и использовании понятия Интересы, однако модуль Память по существу близок к тому, что мы привыкли называть доской объявлений, а понятие Интересы по содержанию близко к известному в теории агентов понятию Желания агента. С другой стороны, авторы не анализируют сложность проблемы организации согласованной работы различных модулей агента в этой архитектуре, которая по существу может быть реализована только при высоком уровне самоорганизации системы, алгоритмы которой могут оказаться самым тонким местом при попытке реализации.

5.3.6. InteRRaP-архитектура


Основная идея этой архитектуры [36] в том, чтобы представить агента как множество уровней, которые связаны через управляющую структуру и используют общую


Рис.14. InteRRaP-архитектура агента


базу знаний. Эта архитектура представлена на рис.14. Она состоит из пяти основных частей: интерфейса с внешним миром; компоненты, основанной на поведении; планирующей компоненты; компоненты, ответственной за кооперацию с другими агентами и базы знаний агента.



Download 0,64 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish