4. Значимость коэффициентов регрессии
Процедура оценки значимости коэффициентов осуществляется аналогичной парной регрессии следующим образом:
1. Рассчитывается значение t-статистики для коэффициента регрессии по формуле .
2. Выбирается уровень доверия q ( 0,9; 0,95 или 0,99).
3. Рассчитывается уровень значимости g = 1 – q.
4. Рассчитывается число степеней свободы n – m – 1, где n – число наблюдений, m – число независимых переменных.
5. Определяется критическое значение t-статистики (tкр) по таблицам распределения Стьюдента на основе g и n – m – 1.
6. Если , то коэффициент является значимым на уровне значимости g. В противном случае коэффициент не значим (на данном уровне g).
t-тесты обеспечивают проверку значимости предельного вклада каждой переменной при допущении, что все остальные переменные уже включены в модель.
5. Стандартная ошибка регрессии
Стандартная ошибка регрессии Se показывает, насколько в среднем фактические значения зависимой переменной y отличаются от ее расчетных значений
.
Используется как основная величина для измерения качества модели (чем она меньше, тем лучше).
Значения Se в однотипных моделях с разным числом наблюдений и (или) переменных сравнимы.
6. Оценка значимости уравнения регрессии в целом
Уравнение значимо, если есть достаточно высокая вероятность того, что существует хотя бы один коэффициент, отличный от нуля.
Имеются альтернативные гипотезы:
H0: b1=b2=…=bm=0 и
H1: b1≠0Úb2≠0Ú…Úbm≠0.
Если принимается гипотеза H0, то уравнение статистически незначимо. В противном случае говорят, что уравнение статистически значимо.
Значимость уравнения регрессии в целом осуществляется с помощью F-статистики.
Оценка значимости уравнения регрессии в целом основана на тождестве дисперсионного анализа:
Þ
TSS – общая сумма квадратов отклонений
ESS – объясненная сумма квадратов отклонений
RSS – необъясненная сумма квадратов отклонений
F-статистика представляет собой отношение объясненной суммы квадратов (в расчете на одну независимую переменную) к остаточной сумме квадратов (в расчете на одну степень свободы)
n – число выборочных наблюдений, m – число независимых переменных.
При отсутствии линейной зависимости между зависимой и независимой переменными F-статистика имеет F-распределение Фишера-Снедекора со степенями свободы k1 = m, k2 = n – m –1.
Процедура оценки значимости уравнения осуществляется следующим образом:
7. Рассчитывается значение F-статистики по формуле .
8. Выбирается уровень доверия q ( 0,9; 0,95 или 0,99).
9. Рассчитывается уровень значимости g = 1 – q.
10. Рассчитывается число степеней свободы n – m – 1, где n – число наблюдений, m – число независимых переменных.
11. Определяется критическое значение F-статистики (Fкр) по таблицам распределения Фишера на основе g и n – m – 1.
12. Если , то уравнение является значимым на уровне значимости g. В противном случае уравнение не значимо (на данном уровне g).
В парной регрессии F-статистика равна квадрату t-статистики: , а значимость коэффициента регрессии и значимость уравнения в целом эквивалентны.
Do'stlaringiz bilan baham: |