Курсовая работа по курсу «Физико-химические основы кондитерского производства» тема: «Физико-химические основы производства пастилы «Клюквенная»


Основные физико-химические процессы, протекающие при производстве пастилы «Клюквенная»



Download 1,1 Mb.
bet10/13
Sana22.04.2022
Hajmi1,1 Mb.
#572433
TuriКурсовая
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
Готовая курсовая печать пам

4. Основные физико-химические процессы, протекающие при производстве пастилы «Клюквенная».
4.1. Физико-химические основы пенообразования
Пены представляют собою дисперсную систему, состоящую из пузырьков газа, разделенных прослойками жидкости. Геометрическая форма газовых пузырьков пены зависит от соотношения объемов газа и жидкости в ней, степени полидисперсности пены и способа упаковки пузырьков. При концентрации газа в пене менее 50% пузырьки имеют форму шара. При объемной концентрации газа более 50% — они приобретают полиэдрическую форму.
Количество газа (воздуха), присутствующего в единице объема пены (объемная концентрация) Сv, плотность пены ρп, плотность дисперсионной среды ρ1 и увеличение объема пены в результате аэрации (%) Vп связаны между собой следующими соотношениями:
Сv =( ρ1— ρп) / ρ1 и Vп = 100 / (1— Сv).
С изменением температуры и давления воздуха объемная концентрация дисперсной фазы также изменяется, что характеризуется уравнением
Сv2 / =1 / [Сv1 + (1— Сv22 / Р1],
где Сv1 — объемная концентрация при давлений Р1 и температуре Т1;
Сv2 — то же при Р2 и Т2.
При производстве кондитерских изделий используется большое разнообразие пенообразных масс: белковые кремы; сбивные начинки; карамельная масса, сбитая с пенообразователем; сбивные конфетные массы; пастильная и зефирная массы.
Пенообразные массы получают, как правило, диспергационным способом. При интенсивном перемешивании жидкости захватывается воздух и дробится на мелкие частички. При диспергировании часть работы расходуется на увеличение свободной поверхностной энергии системы:
 = s
где Е - изменение свободной энергии; s - изменение площади поверхности раздела;  - поверхностное натяжение на границе раздела фаз газ-жидкость.
С уменьшением поверхностного натяжения жидкости пенообразующая способность увеличивается, так как для получения одинакового объема пены требуется затрата меньшей работы.
Пены являются термодинамически неустойчивыми системами, так как имеют сильноразвитую поверхность раздела фаз. По второму закону термодинамики система самопроизвольно стремится уменьшить запас свободной энергии. В связи с этим процессы в пенах направлены на ее коалесценцию, связанную со слиянием отдельных воздушных пузырьков, сокращением поверхности раздела, а следовательно, и с уменьшением поверхностной энергии. Устойчивое состояние системы соответствует полной коалесценции, т.е. расслоению пены, с превращением в две объемные фазы - жидкость и газ с минимальной поверхностью раздела.
Для придания устойчивости пене необходимо присутствие в жидкости. окружающей пузырьки воздуха, пенообразователя, к которому относятся поверхностно-активные вещества (ПАВ). Молекулы ПАВ обладают дифильными свойствами и независимо от концентрации устремляются на границу раздела фаз, адсорбируясь определенным образом.
В результате адсорбции молекул ПАВ на границе раздела фаз значительно снижается поверхностное натяжение. Его величина будет зависеть от плотности упаковки молекул в адсорбционном слое, природы и химического состава ПАВ.
При достижении определенной концентрации ПАВ начинается мицеллообразование. Считают, что в этом случае адсорбированные молекулы ориентируются перпендикулярно поверхностному слою. Значение критической концентрации мицеллообразования (ККМ) зависит от ряда факторов и, в первую очередь, от длины углеводородного радикала молекулы ПАВ и температуры раствора. С увеличением длины цепи ККМ уменьшается.
С увеличением концентрации ПАВ вспениваемость раствора сначала увеличивается до максимального значения, затем остается практически постоянной или понижается. Обычно изменение пенообразующей способности с ростом концентрации связывают с мицеллообразованием, поскольку при достижении ККМ происходит завершение формирования адсорбционного слоя, который в этот момент приобретает максимальную механическую прочность.
В момент получения пены количество жидкости в ней обычно значительно превосходит то, которое должно соответствовать гидростатическому равновесию. Поэтому уже при образовании пены из нее выделяется жидкость. Избыточная жидкость из пленок, покрывающих газовые пузырьки, вытекает в каналы, возникающие в местах контакта трех пленок, и по ним стекает из верхних слоев пены в нижние в направлении силы тяжести до тех пор, пока градиент капиллярного давления не уравновесит силу тяжести.
Одновременно с перетеканием жидкости в каналы, когда давление в нижнем слое пены превысит внешнее давление, начинается вытекание жидкости пены. Этот процесс называется синерезисом пены.
В свою очередь, при вытекании жидкости из пены давление в каналах понижается, соответственно повышается капиллярное и расклинивающее давление, что ускоряет коалесценцию пузырьков и разрушение столба пены.
Стабилизирующее действие адсорбционных слоев ПАВ, как кинетического фактора устойчивости пены, заключается в том, что они уменьшают скорость течения жидкости по каналам и пленкам пены, обеспечивают заторможенность поверхностных слоев пленок и каналов и невозможность развития конвективного переноса, а также создают определенную зависимость профиля каналов от типа ПАВ и градиента давления.
Количественной характеристикой пенью является ее кратность n, определяемая как отношение объема пены Vn к объему жидкости Vж, образующей стенки ее пузырьков:
n = Vn/ Vж.
Скорость вытекания жидкости из пены и время установления капиллярного давления (при большом перепаде давления) зависят от высоты столба пены, кратности пены, типа и концентрации пенообразователя, концентрации электролита и других добавок, вязкости жидкой фазы, температуры пены, присутствия в жидкой фазе твердых частиц.
Установлено, что с увеличением высоты столба пены скорость синерезиса линейно возрастает, но уменьшается с увеличением кратности.
Одной из важнейших характеристик пены является ее дисперсность, которая определяет многие свойства и процессы, протекающие в ней, а также технологические качества пены. Для оценки дисперсности измеряют средний радиус пузырька, эквивалентного по объему сфере, условный диаметр и удельную поверхность раздела жидкость-газ.
При постоянной кратности пены скорость вытекания жидкости пропорциональна квадрату ее дисперсности и обратно пропорциональна числу каналов в пене. При одинаковой кратности и дисперсности скорость синерезиса сильно снижается с уменьшением столба пены. С увеличением концентрации пенообразователя пена становится более высокодисперсной, что является основной причиной уменьшения скорости синерезиса.
Реальные пены полидисперсны. Одним из факторов самопроизвольного разрушения лены является диффузионный перенос газа из маленьких пузырьков в более крупные. Он вызывается неодинаковым давлением газа в пузырьках. В пене каждый пузырек окружен несколькими пузырьками разных размеров, и между каждыми из них происходит диффузионный перенос. Из наиболее мелких пузырьков газ диффундирует во все другие.
Влияние температуры на устойчивость пен довольно сложно и связано с протеканием многих конкурирующих процессов. При повышении температуры увеличивается капиллярное давление внутри пузырьков воздуха, а следовательно, растет скорость диффузионного переноса газа, увеличивается растворимость ПАВ, уменьшается поверхностное натяжение. Эти факторы способствуют кратковременному увеличению объема пены, но не стабильности. При повышении температуры увеличиваются тепловые колебания адсорбированных молекул и, следовательно, ослабляется механическая прочность поверхностного слоя, образованного молекулами ПАВ.
С понижением температуры скорость синерезиса возрастает, хотя вязкость пенообразующего раствора увеличивается. Это обусловлено тем, что с понижением температуры возрастает не только вязкость, но и поверхностное натяжение, которое вызывает увеличение размеров пузырьков пены.
Большинство поверхностно-активных веществ стабилизирует пену в щелочной среде. Пенообразующая способность неионогенных ПАВ не зависит от величины рН среды в области значений от З до 9. Белковые растворы проявляют максимальную пенообразующую способность, как правило, в изоэлектрической точке. При добавлении электролитов происходит сдвиг изоэлектрической точки, одновременно с этим смещается и максимум пенообразования.
Стабилизация пен поверхностно-активными веществами, способными образовывать адсорбированные межфазные слои с особыми структурно-механическими свойствами, может привести к практически неограниченному повышению устойчивости дисперсной системы.



Download 1,1 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish