Kurs ishi rahbar: Ubaydullayev O’tkirjon topshirdi


Mantiqiy elementlar va emas va yoki mantiqiy funksiyalari sxemalarini o’rganish va sinash



Download 2,02 Mb.
bet2/5
Sana06.07.2022
Hajmi2,02 Mb.
#746107
1   2   3   4   5
Bog'liq
Nasriddinov Zaynobiddin kurs-ishi

Mantiqiy elementlar va emas va yoki mantiqiy funksiyalari sxemalarini o’rganish va sinash
Normal shakllar.
Har bir fikr algebrasi formulasi uchun unga teng kuchli bo‘lgan va faqatgina inkor ⌐, kon’yunksiya &, diz’yunksiya \/ amallarini o‘z ichiga olgan formulani keltirish mumkin. Buning uchun implikasiya va ekvivalensiyadan qutulish qoidalaridan foydalanish kifoya.
Ta’rif 1. A1, A2, …, An fikr o‘zgaruvchilarining kon’yunktiv bir hadi deb, ushbu o‘zgaruvchilar yoki ularning teskarilarining kon’yunksiyasiga aytiladi.
Masalan: ⌐A1&A2&A3 , ⌐A1&A2&A3&⌐A4
Ta’rif 2. A1, A2, …, An fikr o‘zgaruvchilarining diz’yunktiv bir hadi deb, ushbu o‘zgaruvchilarning yoki ularning teskarilarining diz’yunksiyasiga aytiladi.
Masalan: ⌐A1\/A2\/A3

Ta’rif 3. Diz’yunktiv normal shakl (DNSh)


deb, kon’yunktiv bir hadlar diz’yunksiyaga
aytiladi, ya’ni ai , i=1, 2, …, k kon’yunktiv bir hadlar bo‘lsa a1\/a2\/…\/an - ifodaga Diz’yunktiv normal shakl deyiladi.

Ta’rif 4. Kon’yunktiv normal shakl (KNSh)


deb, dizyunktiv bir hadlar kon’yunksiyasiga ayiladi, ya’ni bi , i=1, 2, …,l kon’yunktiv bir hadlar bo‘lsa, b1&b2&…&b2 – ifoda KNSh deyiladi.
Har bir formula uchun cheksiz ko‘p KNSh, DNSh lari mavjud.
Mukammal normal shakllar
Ta’rif 5. Agar bir hadga Ai yoki ⌐Ai formulalar
juftligidan faqat bittasi kirgan bo‘lsa, A1, A2, …, An fikr o‘zgaruvchilarining kon’yunktiv yoki diz’yunktiv bir hadlari mukammal deyiladi.
Ta‘rif 6. Agar KNSh yoki DNSh larda A1, A2, …, An o‘zgaruvchilarning takrorlanmaydigan mukammal bir hadlari kirgan bo‘lsa, A1, A2, …, An fikr
o‘zgaruvchilarining KNSh yoki DNSh lari mukammal deyiladi.
Masalan: A&B\/⌐A&B\/A&⌐B – A va B fikr
o‘zgaruvchilarining Mukammal diz’yunktiv normal shakli (MDNSh) bo‘ladi. A\/B – esa MKNSh bo‘ladi.
Teorema 1. Har bir ayniy yolg‘on bo‘lmagan formula yagona MDNF ega bo‘ladi.
Teorema 2. Har bir tavtologiya bo‘lmagan fikrlar algebrasi formulasi, yagona MKNSh ga ega bo‘ladi.

Download 2,02 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish