Kompleks sonlar nazariyasi



Download 262,95 Kb.
bet9/10
Sana29.12.2021
Hajmi262,95 Kb.
#86565
1   2   3   4   5   6   7   8   9   10
Bog'liq
kompleks sonlar nazariyasi

isin ;


m) 2 2 

3 cos



  • isin yoki



    • 2 cos



  • isin ;




12

12



12

12











modul uchun ikkinchi ifodani hosil qilish uchun
  formulani qo’llash lozim;

n) 2 2  3  cos 5 isin 5 ; o) cos    isin  ;




12
 

12

 





 

p) cos    isin   ; q) cos2  isin2 ;

   



2

2
   

r) 0     ,

2cos cos isin ;






 


2

2

2
 

    2 ,

- 2cos cos 2 isin 2 ;






 


2

2

2
 

s) 0     ,

2cos cos 3 isin 3 ;






 


2

2

2
 

    2 ,

  • 2cos cos



  • isin







2
2

29. a) 1  cos0  isin0 ; b)  1

2
i cos



2

2



4   isin 3

4  ;

3

c) 1

2

1 cos0  sin0; d) 1



2 2

i cos

2

5   isin 3

5  ;

3

e)  i cos

3   isin 2

3  .

2

30. a) 5 cos2300isin2300 ; b) sin cos 29   isin 29 .




5


3 20

20



31. Ayniyat geometriyadagi quyidagi teormeani ifodalaydi: parallelogram dioganallari

kvadratlarining yig’indisi tomonlari kvadratlarining yig’indisiga teng.



32. a) 29 1  i


3; b) 2 

3-§.


312 ; c)  64;

  1. 2, agar n – juft bo’lsa, 2, agar n – toq bo’lsa;

1 1 5 3




  1. cos4  isin4; f) cos2  isin2; g)  32icos .

cos 41

36. a) cos



4k 1

12


  • isin

cos 4 2

4k 1

12

5



0  k  5;

b) (cos



6k 1

30


  • isin

6k 1 )



30

0  k  9;





s) cos

8k 1

  • isin

8k 1 0  k  7.

32

1

32


1  i
1  i 3


37. a) 1,  i

; b)  1,  i; c)  1, 

; ;



2 2 2 2

d) 3 1 i, - 3 1 i, - i; e) 1  i; - 1  i; f) 26 1 ;


2

2

2

2
 

 


g)  2,  2i,  21  i, 

21  i;





h) i

3,  3



2

i,  3



2

3  i;







i)  3  i,  1  i

3, - 3  i, 1  i

3;


j) 3  i 3,

 3i, - 3  i



3,  3i;


2
k) 1 6 2 2

3  i 2 3 ,



1 3 4i 1, 1 6 2 2 





2 6
3  i 2 

3 ;







1


  1. 2




2 2 
3  i 2 

3 , - 1



2

2 2 
3  i 2 

3 ,1  i ;







  1. 

i,2i; n)

3 


2

i,  3i ;







3

3 3



3  

3 3





o) 2 i

,



2 2

i 2 ; p) 1  i

,

3 3

i .



38.








  1. 5

2 cos

isin ; 5 2 cos 7



isin 7 ; 5 2 cos 13



isin 13 ;






15

15 15

15 15



15













5 2 cos 19 isin 19 ; 5 2 cos 5 isin 5




5

5
   

   3 3

b)

39. 



  • i,

3 i ;

2

2i, -



i, -

i, - 2i,



  • i .

40. 2cos1440isin144, 2cos2160isin2160 ,

5 31cos1080isin1080 , - 5 31cos2520isin2520 .

41.


а) cos6 x  6cos5 xsinx  15cos4 xsin2 x  20cos3xsin3 x

  • 15cos2 xsin4 x  6cosxsin5 x sin6 x;

c) sin8x  8cos 7 xsinx  56cos 5 xsin3 x  56cos3 xsin5 x  8cosxsin7 x ;

b) cos8x cos8 x  28cos 6 xsin 2 x  70cos 4 xsin4 x  28cos 2 xsin6 x sin8 x .

7tgx  35tg 3 x  21tg 5 x tg 7 x

42. ctg7x  .

1  21tg 2 x  35tg 4 x  7tg 6 x



m 1 C 2 1tg 2 1 x

n



43.

tg nx 0 , bu yerda

m,A  shunday butun sonlarki,




n
A


 0

1 C 2 tg 2 x



n 1 1 m n 1,

n 1  A  n .

2 2 2 2

  1. n  2A  1 toq bo’lganda

n1 1 n1 A k

sinn x  1 2 1

Ck sinn  2k x .

2

n

k 0

n  2A

juft son bo’lganda



n 1 n1 A1 k


A 1




sinn x  12

1

Ck cosn  2k x   1

C A .

2

k 0

n
1 n1 A

2 n

n  2A  1 toq son bo’lganda cosn x

Ck cosn  2k x .

2

1 n1


n

k 0

A k


1 A




n  2A

juft son bo’lganda

cos

x

2

Cn cosn  2k x 2 Cn .



k 0 

Ko’rsatma.

z cosx isinx, z cosx isinx larni qaraladi. Bu yerdan

cosx z z , sinx z z , cosn x 1 z z n




n
2 2i 2n

1

n

Ck znk z k ,


sinn x 1 z z  1

 1k Ck znk z k






n


n
2 k 0

2in

2in

n



k 0

kelib chiqadi. Keyin bir xil binomial umumiy ko’patuvchini qavsdan tashqariga chiqarish va Muavr formulasidan foydalanish lozim.

  1. a)

3sinx sin3x

4

; b)



cos4x  4cos2x  3

;

8


cos5x  5cos3x  10cosx

c)

16
; d)



cos6x  6cos4x  15cos2x  10

;

32



  1. 1
    sin8x  2sin6x  2sin4x  6sin2x; 128

  1. 1 64

cos7x sin7x 7cos5x sin5x 21cos3x sin3x 35cosx sinx.






  1. 2n
    C

2n 2n

4-§.
ekanligini hisobga olinsa, a) va b) tengliklar 1-misolga keltiriladi.



  1. C
    a) va b) tenglamalarni 2-misoldagidek hosil qilish mumkin, bunda:

2n   1   n   2 1   2 n , 2n   2 1   n   1   2 n .

  1. 4-misolga qarang.

  2. 5-misoldagi (*) ayniyatdan x k bo’lganda kelib chiqadi.

iborat:


  1. Yechish. Chap tomondagi ifoda quyidagi ko’phaddagi xn oldidagi koeffisiyentan

xn 1  xn xn11  xn xn2 1  xn  …   1k xnk 1  xn

 1  xn xn xn1  …   1k xnk  1  xn1 xn1  1k xnk .




n1
Oxirgi ifodada xn oldidagi koeffisiyent  1k Ck ga tengligi ravshan.

  1. 7-misoldan kelib chiqadi.

  2. a) Yechish. 1  xm 1  xm

 1  x 2 m ko’paytmani qaraymiz. natijada,

1s C s xs

m

Ct x

m


k k 2k 1 C x
, shuning uchun


s 0

  1. m

t 0

m



k 0

1s Cs Ct  1k Ck

m m m

s t 2k

Avvalo faraz qilaylik, m – juft, ya’ni m  2n , k n

bo’lsin. U holda



m  1s Cs

C 2nt

  1n Cn

2n 1s C s

2  1n Cn


Download 262,95 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish