2.7 Физиологическая характеристика циклических упражнений
Под циклическими движениями понимаются двигательные акты, состоящие из одних и тех же элементов (циклов), многократно повторяющихся во время мышечной деятельности. К циклическим движениям (видам спорта) относятся легкоатлетический бег, спортивная ходьба, плавание, гребля, велоспорт, лыжные гонки, скоростной бег на коньках. Все эти виды спорта характеризуются работой больших групп мышц (глобальная работа), что оказывает значительную нагрузку на сердечно-сосудистую и дыхательную системы. Они требуют развития общей и специальной выносливости, силы, иногда быстроты движений (при спринтерских дистанциях), но не требуют особенно тонкой и точной координации движений (ошибка в координации может быть исправлена во время работы и не влияет существенно на результат, особенно на длинных дистанциях).
Общим для всех циклических движений является то, что выполняемая работа характеризуется разной мощностью и длительностью.
В циклических упражнениях мощность (физическая нагрузка) и скорость перемещения (при неизменной технике выполнения движений) связаны линейной зависимостью: чем больше скорость, тем выше физическая нагрузка.
Совокупность физиологических (и психофизиологических) реакций организма на данную физическую нагрузку позволяет определить физиологическую мощность нагрузки или физиологическую нагрузку на организм работающего человека.
«Физиологическая нагрузка» или «физиологическая мощность» — понятия близкие к термину «тяжесть работы». У каждого человека при выполнении упражнения одного и того же характера в одинаковых условиях внешней среды физиологическая мощность нагрузки находится в прямой зависимости от физической нагрузки. Например, чем выше скорость бега, тем больше физиологическая нагрузка.
Однако одинаковая физическая нагрузка вызывает неодинаковые физиологические реакции у людей разного возраста и пола, у людей с неодинаковой степенью функциональной подготовленности (тренированности), а также у одного и того же человека в разных условиях (например, при повышенных или пониженных температуре или давлении воздуха). Кроме того, различные физиологические реакции наблюдаются у одного и того же человека при одинаковой физической нагрузке, выполняемой различными мышечными группами (руками или ногами) или при разных положениях тела (лежа или стоя). Так, у гребцов на каноэ; пловцов или бегунов, выполняющих одинаковую по физической мощености работу (с одинаковой скоростью потребления О2), физиологические нагрузки (реакции) сильно различаются.
Следовательно, показатели физической мощности упражнения не могут быть использованы в качестве критерия для единой физиологической классификации различных спортивных упражнений, выполняемых людьми разного пола и возраста, с неодинаковыми функциональными возможностями и подготовленностью или одним и тем же спортсменом в разных условиях. Поэтому в качестве классификационного признака чаще используют показатели физиологической мощности или физиологической нагрузки.
Одним из таких показателей служит предельное время выполнения данного упражнения. Проанализируем по данным мировых рекордов зависимость между скоростью преодоления разных дистанций и предельным (рекордным) временем. В. С. Фарфель разделил «кривую рекордов» на четыре зоны относительной мощности: с предельной продолжительностью упражнений до 20 с (зона максимальной мощности), от 20 с до 3—5 мин (зона субмаксимальной мощности), от 3—5 до 30—40 мин (зона большой мощности) и более 40 мин (зона умеренной мощности). Такая классификация спортивных циклических упражнений получила широкое распространение
Другой подход к характеристике физиологической мощности состоит в определении относительных физиологических сдвигов. Характер и величина ответных физиологических реакций на одну и ту же физическую нагрузку зависят прежде всего от предельных функциональных возможностей и ведущих (для данного упражнения) физиологических систем. При выполнении одинаковой физической нагрузки у людей с более высокими функциональными возможностями ведущих систем величина реакций (физиологические сдвиги) меньше, и следовательно, физиологическая нагрузка на ведущие (и другие) системы и соответственно на организм в целом относительно меньше, чем у людей с более низкими функциональными возможностями. Одинаковая физическая нагрузка будет относительно труднее («тяжелее») для вторых, и, следовательно, предельное время ее выполнения у них будет короче, чем у первых. Соответственно первые способны выполнять такие большие физические нагрузки, которые недоступны вторым.
Таким образом, для физиологической классификации спортивных упражнений используются показатели относительной физиологической мощности: физиологической нагрузки, физиологической напряженности, тяжести работы.
Так показателями служат относительные физиологические сдвиги, которые возникают в ведущих функциональных системах в ответ на данную физическую нагрузку, выполняемую в определенных условиях внешней среды. Эти сдвиги выявляются путем сравнения текущих рабочих показателей деятельности ведущих физиологических систем с предельными (максимальными) показателями.
Основная характерная, черта работы максимальной мощности - то, что она может совершаться лишь кратковременно (10-20 с), в анаэробных условиях. Кислородный запрос огромен, в пересчете на единицу времени составляет 40 л/мин (8-13 л за 10-20 с), а кислородный долг - около 8 л. Повышение уровня молочной кислоты, усиление дыхания и работы сердца при этой работе незначительны. Данная работа отличается предельным уровнем энерготрат в единицу времени -4 ккал/с (суммарный расход - всего 80 ккал). Нервная система работает в предельном режиме, нейроны посылают эфферентные импульсы с высокой частотой и получают высокочастотный поток афферентных импульсов от работающих мышц, в синапсах накапливается медиатор, развивается стойкая деполяризация клеточных мембран, снижается возбудимость и лабильность нервных кл ток, расходуются запасы аденозинтрифрсфорной кислоты (АТФ) и креатинфосфата (КрФ).
Основные физиологические резервы, мобилизуемые при работе максимальной мощности, связаны с возможностью сонастройки отдельных нейронов на высокий темп активности и поддержания этого темпа во всей системе управления движениями; с особенностями обмена в мотонейронах и мышцах, в частности, со скоростью ресинтеза АТФ; с возможностью максимальной мобилизации резервов кислорода; способностью мышечных волокон быстро сокращаться и расслабляться, а также с медиаторным обменом, определяющим предельную скорость и правильность передачи информации в нервной системе и от нерва к мышце. Гуморальные механизмы регуляции функций существенного значения в данном случае не имеют.
Работа субмаксимальной мощности может продолжаться до 3-5 мин, вызывая при этом максимальные сдвиги в деятельности сердечно-сосудистой и дыхательной систем (так называемой кардиорес-пираторной системе). Продукты интенсивного гликолиза успевают продиффундировать в кровь, в результате чего концентрация молочной кислоты в крови может достигнуть 250 м%, а рН снижается до 7,0. При этом наблюдается расширение сосудов в работающих мышцах, повышение максимального артериального давления (до 180— 240 мм рт. ст.), усиление и учащение сердечной деятельности (до 180 уд/мин), перераспределение крови в организме, а также учащение и углубление дыхания, нарастание легочной вентиляции (до 150 л/мин). У высококвалифицированных спортсменов кислородный долг может достигнуть максимальных значений - 20 л. Отношение потребления кислорода к кислородному запросу при данной работе составляет 1/3, расход энергии в единицу времени - 1,5-0,6 ккал/с, а суммарный расход - до 450 ккал, что требует около 100 г. глюкозы.
Основными физиологическими резервами, мобилизуемыми при работе субмаксимальной мощности, являются резервы поддержания гомеостаза, а также резервы совершенствования корковых систем управления движениями. Большое значение имеет не только нервная, но и гуморальная регуляция функций. Энерготраты не лимитируют выполнение этой работы.
Работа большой мощности может продолжаться до 20-30 мин. При этой работе продукты обмена насыщают кровь, и в результате включения гуморальной регуляции на предельном уровне функционирует кардиореспираторная система: частота сердечных сокращений -до 180 уд/мин, минутный объем кровообращения - до 30-35 л/мин, систолический объем крови - до 150-200 мл, минутный объем дыхания - до 150 л/мин. Усиливается потоотделение, а с ним - удаление тепла и молочной кислоты. Расход энергии составляет 0,5-0,4 ккал/с (суммарно до 900 ккал, что требует около 200 г глюкозы). Отношение потребления кислорода к кислородному запросу составляет 5/6, а кислородный долг - до 12-15 л.
Основными физиологическими резервами этой работы являются резервы, определяющие мощность и устойчивость механизмов поддержания гомеостаза, возможность продления нарастающего утомления за счет активирующих механизмов мозга.
Работа умеренной мощности может продолжаться до 1 часа и более. Эта работа отличается соответствием между запросом и потреблением кислорода. Накопление молочной кислоты и недоокисленных продуктов невелико. Кислородный долг составляет всего около 4 л, усиление потоотделения ведет к потере воды и солей. Характерны огромные значения суммарных энерготрат – до 3000 ккал и более, что требует до 1500 г и более глюкозы. Резервы глюкозы в печени резко уменьшаются, а уровень глюкозы в крови падает от 110-80 мг% до 50-40 мг%. При этой работе характерно значительное усиление функций желез внутренней секреции, особенно надпочечников.
Основными физиологическими резервами при этой работе являются, в первую очередь, резервы глюкозы, воды, солей и механизмы их мобилизации; механизмы, обеспечивающие использование в качестве источников энергии; механизмы поддержания гомеостаза (теорморегуляции, водного, солевого и углеводного обмена) и стабильного поддержания функциональной системы управления движениями, вопреки развивающемуся запредельному или охранительному торможению.
Следует специально обратить внимание на условность деления на зоны относительной мощности. Люди различной тренированности, совершая одну и ту же работу, будут попадать в различные зоны мощности (она будет означать для них разную интенсивность), они будут пользоваться равными резервными механизмами, не всегда в оптимальном соотношении и с оптимальной интенсивностью.
Одной из задач физиологии спорта и являете выяснение оптимальных условий работы в различных ситуациях, оценка этих возможностей у различных людей, выяснение характера и объема физиологических резервов и путей их активизации, а также уяснение «узких мест» в резервных возможностях организма и путей их преодоления.
По характеру энергообеспечения циклические упражнения могут быть разделены на анаэробные (с преобладанием анаэробного компонента) и аэробные (с преобладанием аэробного компонента).
В свою очередь, анаэробные упражнения делятся на:
1. Анаэробные максимальной мощности, анаэробный компонент которых составляет 90-100%, а потребление кислорода 5-10% отМПК.
2. Анаэробные околомаксимальной мощности, анаэробный компонент которых составляет 75-85%, а потребление кислорода 10-20% от максимального потребления кислорода (МПК).
3. Анаэробные субмаксимальной мощности, анаэробный компонент которых составляет 60-70%, а потребление кислорода 25-30% от МПК.
Аэробные упражнения, в свою очередь, делятся на:
1. Аэробные максимальной мощности, аэробный компонент которых составляет 60-70%, а потребление кислорода 95-100% от МПК.
2. Аэробные околомаксималыюй мощности, аэробный компонент которых составляет до 90%, а потребление кислорода 85-95% от МПК.
3. Аэробные субмаксимальной мощности, аэробный компонент которых составляет более 90%, а потребление кислорода 70-80% от МПК.
4. Аэробные средней мощности, аэробный компонент которых составляет около 100%, а потребление кислорода 55-65% от МПК.
5. Аэробные малой мощности, аэробный компонент которых составляет 100%, а потребление кислорода менее 50% от МПК.
Циклические движения характеризуются закономерным, последовательным чередованием и взаимосвязанностью отдельных фаз целостного движения (цикла) и самих циклов. Взаимосвязанность каждого цикла с предыдущим и последующим является существенной чертой упражнений этого класса.
Физиологической основой циклических движений является ритмический двигательный рефлекс. Выбор оптимального темпа при разучивании циклических движений ускоряет процесс усвоения ритма раздражений, а также установления оптимального ритма всех физиологических функций. Он способствует повышению лабильности и устойчивости нервных центров к ритмическим раздражениям, ускоряет врабатываемость. Примером временного несоответствия темпа движений текущей лабильности нервных центров является бег в предельном темпе. Мощный поток импульсов от проприоцепторов мышц приводит к падению возбудимости и функциональной подвижности нервных центров. Результатом этого является снижение темпа движений и падение скорости бега.
Согласно представлениям Н.Е. Введенского о пессимальном торможении и А.А. Ухтомского об усвоении ритма, высокие ритмы раздражений могут и не вызывать пессимального торможения, если лабильность нервных центров достаточно высока. Неоднократное выполнение скоростных упражнений в процессе систематической тренировки способствует повышению функциональной подвижности нервных центров. Ранее не доступные для усвоения ритмы раздражений становятся оптимальными для высоколабильных нервных центров.
Оптимальный ритм, легко усваиваемый в начале работы, при большой ее продолжительности и монотонности может перерасти в свою противоположность — стать пессимальным. Это обусловлено падением лабильности нервных центров вследствие длительной истощающей работы.
Циклические упражнения классифицируются в зависимости от мощности работы, развиваемой спортсменом. Преимущество подобной классификации для практики физического воспитания очевидно, ибо здесь учитываются не столько двигательные, координационные и другие основы, сколько степень сдвигов физиологических функций, величина физической нагрузки. Знание особенностей физиологических сдвигов при выполнении работы в определенных зонах относительной мощности позволяет рационально планировать нагрузку с учетом особенностей развития утомления и восстановления после выполнения упражнений различной интенсивности
Do'stlaringiz bilan baham: |