Kirish I. Bob chiziqli tengsizliklar sistemasi



Download 1,65 Mb.
bet6/12
Sana16.05.2023
Hajmi1,65 Mb.
#939411
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
Birinchi darajali ko’p no’malumli tengsizliklar sistemasining

1.2 Teng kuchli sistemalar
Bundan keyin bizning maqsadimiz chiziqli tengsizliklar sistemasining yechimlarini topishning effektiv usulini bayon qilishdan iborat.
Ushbu paragrafda biz masalaning yechimini 2-no’malumli sistema uchun bayon qilsakda uni mumkin qadar umumiy nuqta-i nazardan bayon qilamiz va ulardan keyingi ishlanishlarimizda foydalanamiz.
10. Zaruriy lemmalar. Ushbu
(1)
tengsizlik sistemasi berilgan bo’lsin. (1) bilan birga unga mos bo’lgan bir jinsli
a1x+b1y
a2x+b2y (2)
.......................
amx+bmy
Sistema va bir jinsli tenglamalar sistemasi
(3)
ni qaraymiz. Bu sistemalarning XOY tekislikdagi yechimlari sohalarini mos ravishda K, K0, L bilan belgilaymiz. U holda L K0.
Avvalo quyidagi lemmani isbotlaymiz.
1-lemma. (1) sistemaning ixtiyoriy yechimining yig’indisi ya’ni (1) sistemaning yechimi bo’ladi ya’ni
K+K0 K
Isboti. A€K va BC K0 bo’lsin. U holda ular mos ravishda (1) va (2) ni qanoatlantirishi kerak.

Bu tengsizliklarni hadlab qo’shib

ga ega bo’lamiz. Bunda A+B nuqtaning koordinatalari bo’lgan xA+xB, yA+yB sonlar juftligi (1) sistemaning yechimi ekanligi kelib chiqadi, ya’ni A+B€K
2-lemma. 1) Agar A nuqtadan boshlanuvchi biror nur to’laligicha Kga tegishli bo’lib P esa shu nurning K ixtiyoriy nuqtasi bo’lsa, u holda P-A€K0 bo’ladi.
2) Agar biror to’g’ri chiziq to’laligicha K ga tegishli bo’lib K va P lar esa shu to’g’ri chiziqning ixtiyoriy nuqtalari bo’lsalar P-A€L bo’ladi.
Isboti. 1)B=P-A deb belgilab olaylik. Qaralayotgan nurni
A+SB (4)
ko’rinishdagi nuqtalar to’plami deb qarash mumkin. Bunda S>0 – haqiqiy son. Bu nuqtalarning ixtiyoriy shartga ko’ra (1) ning yechimi, ya’ni :
(5)
Bulardan birortasini, masalan birinchisini olib qaraylik:
(a1xA+b1yA+c1)+(a1xB+b1yB)S
Bu tengsizlik ixtiyoriy S 0 uchun o’rinli bo’lishi uchun (a1xB+b1yB) 0. bajarilishi kerak. Xuddi shuningdek mulohaza yuritib (5) dan
A2xB+b2yB ,... amxB+bmym
Larni ya’ni B K ni hosil qilamiz.
Lemmaning ikkinchi qismi ham yuqoridagi singari isbotlanadi. Bu holda qaralayotgan to’g’ri chiziqni (4) nuqtalar to’plamidan iborat deb qaraymiz. Faqat endi S ixtiyoriy haqiqiy son. (5) tengsizliklar S ning ixtiyoriy qiymatlarida o’rinli bo’lishi uchun S oldidagi barcha koeffitsentlar nolga teng bo’lishi kerak.
a1xB+byB=0,...,amxB+bmyB=0
Demak b L.
Osonlik bilan ko’rish mumkinki, 1 va 2 lemmalar ixtiyoriy sondagi no’malumlar qatnashgan tengsizliklar sistemalari uchun ham o’rinli bo’ladi.
20. (1) sistema normal bo’lgan nol (1) va (3) sistemalarni qaraymiz. (3) sistema hamma vaqt nol yechimga ega. Shuning uchun ham uning nolmas yechimga ega.bo’lgan hollari muhim.

Download 1,65 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish