Упражнения
1. Можно ли аксиому 3 сформулировать в таком виде: «Для каждого элемента а из N существует единственный элемент, за которым непосредственно следует а»?
2. Выделите условие и заключение в аксиоме 4, запишите их, используя символы Î, =>.
3. Продолжите определение натурального числа: «Натуральным числом называется элемент множества N,...».
Сложение
По правилам построения аксиоматической теории, определение сложения натуральных чисел нужно ввести, используя только отношение «непосредственно следовать за», и понятия «натуральное число» и «предшествующее число».
Предварим определение сложения следующими рассуждениями. Если к любому натуральному числу а прибавить 1, то получим число а', непосредственно следующее за а, т.е. а + 1 = а' и, следовательно, мы получим правило прибавления 1 к любому натуральному числу. Но как прибавлять к числу а натуральное число b, отличное от 1? Воспользуемся следующим фактом: если известно, что 2 + 3 = 5, то сумма 2+4 равна числу 6, которое непосредственно следует за числом 5. Происходит так потому, что в сумме 2 + 4 второе слагаемое есть число, непосредственно следующее за числом 3. Таким образом, сумму а + b' можно найти, если известна сумма а + b . Эти факты и положены в основу определения сложения натуральных чисел в аксиоматической теории. Кроме того, в нем используется понятие алгебраической операции.
Определение. Сложением натуральных чисел называется алгебраическая операция, обладающая свойствами:
1) (" а Î N) а + 1 = а', 2)(" а, b Î N) а + b' =(а + b)'.
Число а + b называется суммой чисел а и b , а сами числа аи b - слагаемыми.
Как известно, сумма любых двух натуральных чисел представляет собой также натуральное число, и для любых натуральных чисел а и b сумма а + b - единственна. Другими словами, сумма натуральных чисел существует и единственна. Особенностью определения является то, что заранее не известно, существует ли алгебраическая операция, обладающая указанными свойствами, а если существует, то единственна ли она? Поэтому при аксиоматическом построении теории натуральных чисел доказывают следующие утверждение:
Теорема 3.Сложение натуральных чисел существует и оно единственно.
Эта теорема состоит из двух утверждений (двух теорем):
1) сложение натуральных чисел существует;
2) сложение натуральных чисел единственно.
Как правило, существование и единственность связывают вместе, но они чаще всего не зависят друг от друга. Существование какого-либо объекта не подразумевает его единственность. (Например, если вы говорите, что у вас есть карандаш, то это не значит, что он только один.) Утверждение о единственности означает, что не может существовать двух объектов с заданными свойствами. Единственность часто доказывается методом от противного: предполагают, что имеется два объекта, удовлетворяющих данному условию, а затем выстраивают цепочку дедуктивных умозаключений, приводящую к противоречию.
Чтобы убедиться в истинности теоремы 3, сначала докажем, что если в множестве N существует операция, обладающая свойствами 1 и 2, то эта операция единственная; затем докажем, что операция сложения со свойствами 1 и 2 существует.
Do'stlaringiz bilan baham: |