История появления натуральных чисел и нуля. Теоретико-множественное определение натурального числа и нуля. Теоретико-множественное определение сложения и разности целых неотрицательных чисел. Свойства сложения



Download 1,03 Mb.
bet12/60
Sana21.02.2022
Hajmi1,03 Mb.
#40272
TuriЛекция
1   ...   8   9   10   11   12   13   14   15   ...   60
Bog'liq
Лекция1

Лекция № 4


Тема: Понятие об аксиоматическом методе построения теории. Аксиомы Пеано.
Изучаемым понятиям дают определения. Дадим определение какому-нибудь математическому понятию, например, понятию «прямоугольник». «Прямоугольником называется параллелограмм, у которого все углы прямые».
В данном случае нас интересует понятие прямоугольника, но в предложении, которое мы только что записали, участвуют и другие понятия: параллелограмм, угол, прямой угол.
Дадим теперь определения перечисленным понятиям. «Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны». В этом предложении мы снова употребили другие понятия «четырехугольник», «противоположные стороны», «параллельность».
Дадим определение понятия угла. «Фигура, состоящая из двух различных лучей с общим началом и ограниченной ими части плоскости, называется углом». Опять употребили другие понятия: «фигура», «луч», «плоскость», которые тоже нужно объяснять через другие.
Если мы будем объяснять каждое встречающееся понятие, то этот процесс никогда не кончится. Поэтому при построении математических теорий надо принять некоторые понятия за основные, неопределяемые понятия, и с их помощью строить все остальные понятия. Например, в школьной планиметрии (в определенной системе изложения) основными понятиями являются: точка, прямая, расстояние. В школьной стереометрии: точка, прямая, расстояние, плоскость. В алгебре высказываний: понятие высказывания. В теории множеств: множество. В арифметике: число.
Отличительной чертой математики, в противоположность другим наукам, является использование доказательств, а не наблюдений. Математик может при случае использовать наблюдение: например, он может измерить углы многих треугольников и прийти к выводу, что сумма углов треугольника всегда равна 180°. Однако он признает этот факт как математический закон только тогда, когда он будет доказан. Несмотря на это, ясно, что все математические законы невозможно доказать. Поэтому выбираются некоторые начальные законы, называемые аксиомами, которые принимаются без доказательства.
Метод логической организации множества предложений, составляющего теорию, называемыйаксиоматическим, состоит в следующем:
1. Выделяются некоторые исходные (неопределяемые через другие) понятия и указываются неопределяемые отношения, связанные с этими понятиями. Все остальные понятия этой теории определяются через исходные.
2. Формулируются основные предложения, их называют аксиомами. Аксиомы принимаются без доказательства в данной теории, и на их основе доказываются другие предложения данной теории – теоремы. В аксиомах дается описание отношений между основными понятиями: они представляют, по существу, неявное определение основных понятий.
Разумеется, при построении аксиоматической теории выбор основных понятий, отношений и аксиом не является произвольным. Они должны отражать некоторые реальные объекты и их свойства.
Например, если бы задали аксиому: для любых трех точек А, В, М АМ ³ АВ + ВМ, то получилась бы теория, не имеющая отношения к реальному миру, т.к. в реальном мире АВ + ВМ ³ АМ. Итак, система аксиом должна, возможно, точнее отражать свойства реального мира, но кроме того она должна удовлетворять некоторым требованиям логического характера. Назовем основные из них. Система аксиом должна быть:
а) непротиворечивой, т.е. среди теорем, выведенных из данной системы аксиом, нет двух предложений типа А и  , противоречащих друг другу;
б) независимой, т.е. ни одну из аксиом нельзя вывести из остальных аксиом этой системы;
в) категоричной, т.е. любые два множества, в которых эта система аксиом выполняется (эти множества называются моделями) изоморфны («одинаково устроены»).
Замечание. В аксиоматических теориях не говорят об «истинной природе» изучаемых объектов и понятий. Поэтому может оказаться, что одним и тем же аксиомам удовлетворяют разные множества объектов и разные отношения между ними, т.е. можно построить разные модели данной системы аксиом.
При аксиоматическом построении какой-либо математической теории соблюдаются определенные правила:

· некоторые понятия теории выбираются в качестве основных и принимаются без определения;


· каждому понятию теории, которое не содержится в списке основных, дается определение;


· формулируются аксиомы – предложения, которые в данной теории принимаются без доказательства; в них раскрываются свойства основных понятий;


· каждое предложение теории, которое не содержится в списке аксиом, должно быть доказано; такие предложения называют теоремами и доказывают их на основе аксиом и терем.


При аксиоматическом построении теории все утверждения выводятся из аксиом путем доказательства.


Поэтому к системе аксиом предъявляются особые требования:


· непротиворечивость (система аксиом называется непротиворечивой, если из нее нельзя логически вывести два взаимно исключающих друг друга предложения);


· независимость (система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом).


Множество, с заданным в нем отношением называется моделью данной системы аксиом, если в нем выполняются все аксиомы данной системы.


Построить систему аксиом для множества натуральных чисел можно многими способами. За основное понятие можно принять, например, сумму чисел или отношение порядка. В любом случае нужно задать систему аксиом, описывающие свойства основных понятий.


Дадим систему аксиом, приняв основное понятие операцию сложения.


Непустое множество N назовем множеством натуральных чисел, если в нем определена операция (a; b) → a + b, называемая сложением и обладающая свойствами:


1. сложение коммутативно, т.е. a + b = b + a.


2. сложение ассоциативно, т.е. (a + b) + c = a + (b + c).


3. для ,

4. в любом множестве А, являющемся подмножеством множества N, где А есть число а такое, что все хА, равны a + b, где bN.

Аксиом 1 – 4 достаточно, чтобы построить всю арифметику натуральных чисел. Но при таком построении уже нельзя опираться на свойства конечных множеств, не нашедших отражение в этих аксиомах.


Возьмем в качестве основного понятия отношение «непосредственно следовать за…», заданное на непустом множестве N. Тогда натуральным рядом чисел будет являться множество N, в котором определено отношение «непосредственно следовать за», а натуральными числами будут называться все элементы N, причем имеют место следующие аксиомы Пеано:





Download 1,03 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish