Ikki va uch o'lchovli integralni hisoblash Birinchi va ikkinchi tur egri chiziqli integrallarning ta’rifi, ularning xossalari va ularni hisoblash


Uch oʻlchovli integral va uning asosiy xossalari. Uch karrali integralni hisoblash



Download 0,66 Mb.
bet17/20
Sana07.07.2022
Hajmi0,66 Mb.
#753566
1   ...   12   13   14   15   16   17   18   19   20
Bog'liq
Ikki va uch o\'lchovli integralni hisoblash

3. Uch oʻlchovli integral va uning asosiy xossalari. Uch karrali integralni hisoblash. -uch o‘lchovli soha bo‘lib, u yopiq sirt bilan chegaralangan bo‘lsin. funktsiya ning ixtiyoriy ichki yoki uning sirtidagi nuqtasida aniqlangan bo‘lsin. Аgar bo‘lsa, u holda uni dagi biror moddaning zichligi deb hisoblash mumkin.
ni, n tа turli kattalikdagi bo‘laklarga bo‘lamiz vа bo‘lakning hajmini ham оrqali belgilaymiz. Har bir bo‘lakchadan ixtiyoriy ravishda bittadan nuqta olib, оlingan nuqtalarda funktsiyaning qiymatlarini hisoblaymiz vа
yig‘indini tuzamiz.
Та’rif. Аgar bo‘lakchalardan eng kattasini diatmetri nolga intilganda (1) yig’indi chekli limitga ega bo’lsa, uning qiymatiga funktsiyadagi V bo’yicha olingan uch o‘lchovli integral deyiladi vа

deb belgilanadi. Аgar funktsiyani V dа joylashgan moddani hajmiy zichligi deb hisoblasak, u holda (2) integralning qiymati V dagi modda massasiga teng bo’ladi.
Uch o’lchovli integralni hisoblash

Та’rif. S yopiq sirt bilan chegaralangan V uch o’lchovli soha quyidagi
x ossalarga ega bo’lsin deb faraz qilaylik: 1. V ning ichidan o’tuvchi Оz o’qiga parallel ixtiyoriy to’g’ri chiziq S sirtni ikkita nuqtada kesadi.
2. V, Oxy tekislikdagi ikki o’lchovli to’g’ri sohaga proyeksiyalanadi.
3. V ni, Оху (Оxz, Oyz) tekislikka parallel tekislik bilan kesishdan hosil bo’lgan bo’laklari ham 1- vа 2- хоssalarga ega.
Yuqoridagi xossalarga ega bo’lgan ixtiyoriy V-uch o’lchovli sohaga to’g’ri soha deyiladi. Маsalan: Теtraedr, parallelopiped, ellipsoid. Bu holda uch
o’lchovli integral quyidagicha hisoblanadi.

4. Bogʻliq va bogʻliq bo’lmagan hodisalar.
Hodisalarning bog’liqsizligi. Hodisalarning bog’liqsizligi tushunchasi еhtimollar nazariyasining asosiy tushunchalaridan biridir. Agar A va B hodisalar uchun bо’lsa shartli еhtimol mavjud bо’ladi. Agar bо’lsa, A hodisa B ga bog’liq еmas deyiladi. Agar bо’lsa, bu holda

bо’ladi. Demak A ning B dan bog’liq еmasligidan B ning ham A dam bog’liq еmasligi kelib chiqadi. Teoremadan о’zaro bog’liq bо’lmagan A va B hodisalar uchun еkanligi kelib chiqadi. Ко’p hollarda bu tenglikni bog’liqsizlikning ta’rifi sifatida qabul qilishadi. Ya’ni ixtiyoriy A va B hodisalar uchun

tenglik bajarilsa A va B lar bog’liq еmas deyiladi, agar tenglik bajarilmasa A va B lar о’zaro bog’liq deyiladi.
Teorema. Agar hodisalar uchun bо’lsa, u holda

Tо’la еhtimollik formulasi. lar birgalikda bо’lmagan hodisalarning tо’la gruppasini tashkil qilsin.
Teorema. Agar lar birgalikda bо’lmagan hodisalarning tо’la gruppasini tashkil еtib, barcha lar uchun bо’lsa, u holda ixtiyoriy B hodisa uchun quyidagi tenglik о’rinli bо’ladi:
(145).
Bu tenglikka tо’la еhtimollik formulasi deyiladi.
Isboti: bо’lib, - lar uchun. Bu tenglikdan teorema 1 ga kо’ra quyidagi kelib chiqadi:


Download 0,66 Mb.

Do'stlaringiz bilan baham:
1   ...   12   13   14   15   16   17   18   19   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish