Рис. 3.3.1. Зависимость состава разработанных флотореагентов-вспенивателей от плотности сравнительно с флотореагентом Т-92.
Рис. 3.3.2. Зависимость состава разработанных флотореагентов-вспенивателей от вязкости сравнительно с флотореагентом Т-92.
Полученные данные показывают, что ближе к результатам вязкости аналога Т-92 показывают образцы №4, №5, №6, №7, №8, а образцы №1-3 показывают данные по вязкости меньше, чем Т-92.
На эффективность действия пенообразователя при всех прочих равных условиях влияют изменения рН и температуры. Это происходит через изменение растворимости пенообразователя, концентрации и подвижности его молекул в пульпе, что приводит к изменению скорости выравнивания плотности адсорбционного слоя на пузырьках и, тем самым, к изменению их эластичности и прочности пены. Однокомпонентные пенообразователи, как правило, более чувствительны к изменению указанных параметров флотации. Поэтому стабилизация пенообразования и соответственно эффективность флотации в практических условиях добиваются применением пенообразователей, состоящих из нескольких компонентов.
Рис. 3.3.3. Зависимость состава разработанных флотореагентов-вспенивателей от показателя водорода (рН) сравнительно с флотореагентом Т-92.
Как видно из диаграммы, рН разработанных образцов №2, №3, №4, №5, №7 и №8 имеет нейтральную среду равную рН-7, как у известного флотореагента-вспенивателя Т-92.
Необходимо отметить, что состав композиционного химического флотореагента-вспенивателя зависит от природы, вида, состава, сорбционных и физико-химических свойств органоминеральных ингредиентов и от содержания флотируемых руд. Поэтому с целью разработки эффективных составов композиционных химических флотореагентов-вспенивателей были изучены пенообразующая способность, устойчивость и физико-химические свойства разрабатываемых пенообразователей на водной и водно-спиртовой основе.
Для определения пенообразующей способности и устойчивости пены проводили лабораторные исследования синтезированных флотореагентов-вспенивателей. Пенообразующая способность и устойчивость пены растворов флотореагентов-вспенивателей определяли по ГОСТ 23409.26-78 [116]. Метод основан на измерении объёма пены (V, мл), образующейся при перемешивании раствора флотореагентов-вспенивателей в воде или в жидкой композиции.
Сравнительно устойчивость пен, содержащих органическую фазу, определяли по высоте слоя образованной пены. В этом случае для проведения эксперимента использовали мешалку с частотой вращения импеллера 3000 об/мин; стакан градуированный, термометр и секундомер.
В стакан наливали 100 см3 водного раствора пенообразователя и установили его на прибор. Температура раствора (18±2) °С. Раствор перемешивали в течение 30 с. По истечении времени измеряли объем образовавшейся пены по делениям на стакане. Через 30 мин проводили повторение измерения объема пены. Пенообразующую способность (П) в процентах вычисляли по формуле:
,
где V - объем образовавшейся пены, см ;
Vp - исходный объем раствора, см .
Устойчивость пены (У) в процентах вычисляли по формуле:
,
где V30 - объем пены после 30 мин, см ;
V0 - первоначальный объем пены, см .
За окончательный результат испытания принимали среднее арифметическое результатов трех последних определений.
Устойчивая пена образуется из растворов, содержащих:
1. КССБ + глицерин + ПАВ (сульфанол) + вода;
2. (Глицерин+ КПГС + спиртовый отход (ИАФ)) 50% + (глицерин+ КССБ + спиртовый отход (ИАФ)) 50%;
3. Глицерин+ КПГС + спиртовый отход (ИАФ)+ 1гр фенол: пена высотой от 60 см3 до 100 см3 формируется в течение 15 минут, при этом интенсивного разрушения в объеме не наблюдали.
На рисунке 3.3.4 приведены результаты исследований по способности пенообразования и по устойчивости пены синтезированных вспенивателей.
1-состав, 2-состав, 3-состав, 4-состав, 5- Флотореагент Т-92.
Do'stlaringiz bilan baham: |