FIGURE 4.
Dependence of thef short-circuit current of the gold
nanoparticles with radius of 6 nm and 11 nm introduced ZnO/Si solar cell
on periodicity
The minimum value of the short-circuit current of the
ZnO/Si solar cell with a nanoparticle of 11 nm radius was
equal to that of the ZnO/Si solar cell without the
nanoparticle. The maximum value was 1.29 times greater
than that of the ZnO/Si solar cell without the nanoparticle. In
experiment [55], it was found that silver nanoparticles can
boost efficiency of ZnO/Si heterojunction solar cell. In
addition, the short-circuit current of the ZnO/Si solar cell can
also be determined by formula 1. Figure 5 shows the
dependence of the absorption coefficient of the ZnO/Si solar
cell on the wavelength. The reason for the sharp decrease in
the short circuit current of ZnO/Si solar cell with gold
nanoparticle (dp=120 nm, r=6 nm) is the sharp decrease in
the absorption coefficient in the wavelength range of 535-
900 nm. Its absorption coefficient is almost reduced from
that of the ZnO/Si solar cell without nanoparticle.
FIGURE 5.
Dependence of the absorption coefficient of the ZnO/Si solar
cell on the wavelength
Figure 6 shows the dependence of the open circuit voltage
and fill factor of perovskite/Si and ZnO/Si solar cells on
nanoparticle size and periodicity. The open circuit voltage of
perovskite/Si (Fig. 6.a) and ZnO/Si (Fig. 6.a') solar cells also
changed depending on the nanoparticle size and periodicity,
as did the short-circuit current. For the perovskite/Si solar
cell, the maximum value of the open circuit voltage was
0.384 V, the minimum value was 0.366 V, and for the
ZnO/Si solar cell, it was equal to 0.306 V and 0.27 V,
respectively. The open circuit voltage of Perovskite/Si and
ZnO/Si solar cells without nanoparticles is 0.3 V. Therefore,
when a gold nanoparticle is introduced into a perovskite/Si
solar cell, the efficiency increases significantly.
a
a'
b
2
3
4
5
6
7
8
9
10
11
0.06
0.11
0.16
J
sc
,
(m
A
/cm
2
)
Periodicity (µm)
6 nm
11 nm
0
0.2
0.4
0.6
0.8
1
1.2
0.3
0.5
0.7
0.9
A
b
so
rp
tio
n
co
ef
ficien
t
Wavelength (µm)
dp=60 nm, r=6 nm
dp=120 nm, r=6 nm
without nanoparticle
0,06
0,08
0,10
0,12
0,14
0,16
0,18
0,20
0,004
0,006
0,008
0,010
0,012
0,014
0,016
0,018
0,020
Radiu
s (
m)
Periodicity (
m)
0,3660
0,3682
0,3705
0,3728
0,3750
0,3772
0,3795
0,3818
0,3840
Open circuit voltage
0,06
0,08
0,10
0,12
0,14
0,16
0,18
0,20
0,004
0,006
0,008
0,010
0,012
0,014
0,016
0,018
0,020
Radiu
s (
m)
Periodicity (
m)
0,2700
0,2745
0,2790
0,2835
0,2880
0,2925
0,2970
0,3015
0,3060
Open circuit voltage
0,06
0,08
0,10
0,12
0,14
0,16
0,18
0,20
0,004
0,006
0,008
0,010
0,012
0,014
0,016
0,018
0,020
Radiu
s (
m)
Periodicity (
m)
0,6508
0,6583
0,6658
0,6732
0,6807
0,6882
0,6956
0,7031
0,7106
Fill factor
This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221875
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
VOLUME XX, 2017
9
b’
Do'stlaringiz bilan baham: |