REFERENCES
[1]
C. Ballif, F. J. Haug, M. Boccard, P. J. Verlinden, and G. Hahn,
“Status and perspectives of crystalline silicon photovoltaics in
research and industry,”
Nature Reviews Materials 2022 7:8
, vol.
7, no. 8, pp. 597–616, Mar. 2022, doi: 10.1038/s41578-022-
00423-2.
[2]
M. Valiei, P. M. Shaibani, H. Abdizadeh, M. Kolahdouz, E. Asl
Soleimani, and J. Poursafar, “Design and optimization of single,
double and multilayer anti-reflection coatings on planar and
textured surface of silicon solar cells,”
Mater Today Commun
,
vol.
32,
p.
104144,
Aug.
2022,
doi:
10.1016/J.MTCOMM.2022.104144.
[3]
J. Gulomov, R. Aliev, and B. Urmanov, “Effect of the Thickness
on Photoelectric Parameters of a Textured Silicon Solar Cell,”
Journal of Surface Investigation: X-ray, Synchrotron and Neutron
Techniques 2022 16:3
, vol. 16, no. 3, pp. 416–420, Jun. 2022, doi:
10.1134/S1027451022030375.
[4]
M. S. S. Basyoni, A. Zekry, and A. Shaker, “Investigation of Base
High Doping Impact on the npn Solar Cell Microstructure
Performance Using Physically Based Analytical Model,”
IEEE
Access
,
vol.
9,
pp.
16958–16966,
2021,
doi:
10.1109/ACCESS.2021.3053625.
[5]
S. Kashyap, J. Madan, R. Pandey, and J. Ramanujam, “22.8%
efficient ion implanted PERC solar cell with a roadmap to achieve
23.5% efficiency: A process and device simulation study,”
Opt
Mater (Amst)
, vol. 128, p. 112399, Jun. 2022, doi:
10.1016/J.OPTMAT.2022.112399.
[6]
T. Markvart, “Shockley: Queisser detailed balance limit after
60 years,”
Wiley Interdiscip Rev Energy Environ
, vol. 11, no. 4,
p. e430, Jul. 2022, doi: 10.1002/WENE.430.
[7]
Y. Xu, T. Gong, and J. N. Munday, “The generalized Shockley-
Queisser limit for nanostructured solar cells,”
Scientific Reports
2015 5:1
, vol. 5, no. 1, pp. 1–9, Sep. 2015, doi:
10.1038/srep13536.
[8]
J. Gulomov and R. Aliev, “The Way of the Increasing Two Times
the Efficiency of Silicon Solar Cell,”
Physics and Chemistry of
Solid State
, vol. 22, no. 4, pp. 756–760, Dec. 2021, doi:
10.15330/PCSS.22.4.756-760.
[9]
J. Schön
et al.
, “Improvements in ultra-light and flexible epitaxial
lift-off GaInP/GaAs/GaInAs solar cells for space applications,”
Progress in Photovoltaics: Research and Applications
, vol. 30,
no. 8, pp. 1003–1011, Aug. 2022, doi: 10.1002/PIP.3542.
[10]
D. Wang
et al.
, “Low-Cost and Flexible Anti-Reflection Films
Constructed from Nano Multi-Layers of TiO2 and SiO2 for
Perovskite Solar Cells,”
IEEE Access
, vol. 7, pp. 176394–176403,
2019, doi: 10.1109/ACCESS.2019.2957583.
[11]
A. W. Faridi
et al.
, “Synthesis and Characterization of High-
Efficiency Halide Perovskite Nanomaterials for Light-Absorbing
Applications,”
Ind
Eng
Chem
Res
,
2022,
doi:
10.1021/ACS.IECR.2C00416/ASSET/IMAGES/LARGE/IE2C0
0416_0011.JPEG.
[12]
N. Ali
et al.
, “A review on perovskite materials with solar cell
prospective,”
Int J Energy Res
, vol. 45, no. 14, pp. 19729–19745,
Nov. 2021, doi: 10.1002/ER.7067.
[13]
M. S. S. Basyoni
et al.
, “On the Investigation of Interface Defects
of Solar Cells: Lead-Based vs Lead-Free Perovskite,”
IEEE
0,06
0,08
0,10
0,12
0,14
0,16
0,18
0,20
0,004
0,006
0,008
0,010
0,012
0,014
0,016
0,018
0,020
Radiu
s (
m)
Periodicity (
m)
0,6506
0,6582
0,6658
0,6733
0,6809
0,6885
0,6961
0,7036
0,7112
Fill factor
This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3221875
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
VOLUME XX, 2017
9
Access
,
vol.
9,
pp.
130221–130232,
2021,
doi:
10.1109/ACCESS.2021.3114383.
[14]
K. P. Ong
Do'stlaringiz bilan baham: |