II bob. Funksiyaning chegaralanganligi.
2.1. Chegaralangan, qavariq va botiq funksiyalar haqida tushuncha.
V1 D(y) nuqtalar to’plamida berilgan y = f (x) funksiyaning V1 da erishadigan qiymatlari to’plami yuqoridan (quyidan) chegaralangan bo’lsa, funksiya V1 da yuqoridan (quyidan) chegaralangan deyiladi.
y = f (x) funksiyaning yuqoridan (quyidan) chegaralanganligi, shunday bir K son mavjudligini anglatadiki, barcha M є V1 nuqtalar uchun f (M) ≤ K (f (M) ≥ K) tengsizlik o’rinli bo’ladi.
V1 D(y) nuqtalar to’plamida ham quyidan va ham yuqoridan che-garalangan funksiyaga, V1 to’plamda chegaralangan funksiya deb ataladi. Ushbu holda, agar V1 = D(y) bo’lsa, y = f (M) funksiya aniqlanish sohasida chegaralangan deyiladi va uning qiymatlari to’plami chegaralangan sonlar to’plamidan iborat bo’ladi.
Agar y = f (M) funksiya V1 to’plamda yuqoridan (quyidan) chegaralanmagan bo’lsa, V1 to’plamga tegishli {Mk} nuqtalar ketma-ketligi mavjudki, ( ) munosabat o’rinlidir.
Misollar:
1) bir o’zgaruvchili y = x2 funksiya aniqlanish sohasi R1 da quyidan chegaralangan funksiyadir, chunki E(y)=[0; ∞);
2) ikki o’zgaruvchili funksiya o’z aniqlanish sohasi D(y) = {M(x1; x2) є R2 | x12 + x22 ≤ 1} to’plamda chegaralangandir, chunki E(y) = [0; 1].
y = f (M) funksiya qavariq V Rn nuqtalar to’plamida aniqlangan bo’lsin.
V qavariq to’plamga tegishli har qanday ikki M1(x1; x2; …; xn) va M2(u1; u2; …; un) nuqtalar va ixtiyoriy 0 ≤ α ≤ 1 son uchun f (P) ≤ α f (M1) + (1-α) f (M2) (f (P) ≥ α f (M1) + (1–α) f (M2)) tengsizliklar o’rinli bo’lsa, bu yerda R(α x1 +(1–α)u1; α x2 +(1–α)u2; …; αxn +(1-α)un), u holda, y = f (M) funksiya V to’plamda qavariq (botiq) funksiya deyiladi.
Masalan, y = x2 funksiya R1 da qavariq funksiyaga misol bo’lsa, y = -x2 funksiya esa R1 da botiq funksiyaga misol bo’ladi. n o’zgaruvchili chiziqli y = a1x1 + a2x2 + … +anxn funksiya Rn fazoda bir vaqtda ham qavariq va ham botiq funksiyadir.
Qavariq funksiyalar quyidagi xossalarga ega:
1. –f (M) funksiya V to’plamda botiq bo’lgandagina, f (M) funksiya V da qavariq funksiya bo’ladi.
2. f1(M) va f2(M) funksiyalar V to’plamda qavariq bo’lsa, ularning ixtiyoriy nomanfiy k1 va k2 koeffitsientli chiziqli k1f1(M) + k2f2(M) kombinatsiyasi V to’plamda qavariq bo’ladi.
3. f (M) funksiya V to’plamda qavariq bo’lib, {M є V | f (M) ≤ b} to’plam bo’sh bo’lmasa, bu yerda b ixtiyoriy son, u holda to’plamning o’zi ham qavariq to’plamdir.
Botiq funksiyalar ham yuqoridagi xossalarga o’xshash xossalarga ega.
y = f (M) = f (x1; x2; …; xn) funksiya V Rn to’plamda aniqlangan bo’lib, nuqta V to’plamning quyuqlanish nuqtasi bo’lsin. Funksiya limitining bir-biriga o’zaro teng kuchli Geyne va Koshi tillaridagi ta’riflari mavjud.
Ko’p o’zgaruvchili funksiya limiti Geyne yoki nuqtalar ketma-ketligi tilida quyidagicha ta’riflanadi: Har bir hadi V to’plamga tegishli va M0 quyuqlanish nuqtasidan farqli har qanday M1, M2, …, Mk, … nuqtalar ketma-ketligi M0 nuqtaga intilganda, mos funksiya qiymatlari f (M1), f (M2), …, f (Mk), … sonli ketma-ketligi b songa intilsa, u holda b soni f (M) funksiyaning M → M0 dagi limiti deyiladi va
yoki
ko’rinishda yoziladi.
Xususan, bir o’zgaruvchili y = f (x) funksiya uchun: har qanday x0 songa intiluvchi argument qiymatlari x1, x2, …, xk, … sonli ketma – ketligi uchun, bu yerda xk є V, xk ≠ x0 (k = 1, 2, 3, …), funksiya qiymatlari f (x1), f (x2), …, f (xk), … sonli ketma – ketligi b songa intilsa, b soni f (x) funksiyaning x → x0 dagi limiti deyiladi va ko’rinishda yoziladi.
Funksiya limiti Koshi yoki ε – δ tilida quyidagicha ta’riflanadi:
Har qanday oldindan tayinlanadigan ε > 0 son uchun M0 nuqtaning δ atrofi Sδ(M0) ni ko’rsatish mumkin bo’lsaki, barcha M є Sδ(M0) ∩ V, M ≠ M0 nuqtalar uchun |f (M) - b| < ε tengsizlik o’rinli bo’lsa, u holda b soni f (M) funksiyaning M → M0 dagi limiti deyiladi.
Xususiy holda, bir o’zgaruvchili y = f (x) funksiya uchun: Har qanday ε > 0 son uchun shunday bir δ > 0 son tanlash mumkin bo’lsaki, V to’plamga tegishli va 0 < |x - x0| < δ munosabatlarni qanoatlantiruvchi har bir x uchun |f (x) – b| < ε tengsizlik bajarilsa, b soni f (x) funksiyaning x → x0 dagi limiti deyiladi (1-rasm).
Yuqorida keltirilgan ta’riflardan birini qo’llab, masalan,
, 2) yoki 3) mavjud emasligini isbotlash mumkin.
1-rasm
Quyida sanab o’tiladigan va ajoyib limitlar nomini olgan limitlar ham ta’riflar asosida isbotlanadi.
(1-ajoyib limit asosiy shakli).
2. . 3. . 4. .
5. . (2-ajoyib limit asosiy shakli).
6. . 7. .
8. . 9. .
Limitga ega funksiyalar o’zlarining quyidagi xossalari bilan xarakterlanadi:
1) y = f (M) funksiya M → M0 da limitga ega bo’lsa, us hbu limit yagonadir;
2) y = f (M) funksiya M → M0 da chekli limitga ega bo’lsa, M 0 nuqtaning δ atrofi Sδ(M0) mavjudki, Sδ(M0) ∩ V to’plamda f (M) funksiya chegaralangan bo’ladi.
Do'stlaringiz bilan baham: |