Коэффициент полезного действия. Гидролиз одного моля АТФ дает примерно 48 кДж энергии. Однако лишь около 40-50% ее превращается в механическую энергию работы, а остальные 50-60% рассеиваются в виде тепла при запуске (начальная теплота) и во время сокращения мышцы, температура которой при этом несколько повышается. Таким образом, к.п.д. элементарного преобразования АТФ в миофибриллах составляет примерно 40-50%. Однако в естественных условиях механический к.п.д. мышц обычно гораздо ниже - около 20-30%, так как во время сокращения и после него процессы, требующие затрат энергии, идут и вне миофибрилл. Эти процессы, например работа ионных насосов и окислительная регенерация АТФ, сопровождаются значительным теплообразованием (теплота восстановления). Чем больше совершенная работа, тем больше образуется тепла и расходуется энергоресурсов (углеводов и жиров) и кислорода. Такая закономерность, кстати, объясняет усталость, усиленное потоотделение и одышку при подъеме в гору, но не при спуске.
Энергетический метаболизм. Во время продолжительной равномерной мышечной активности происходит аэробная регенерация АТФ, главным образом за счет окислительного фосфорилирования. Необходимая для этого энергия выделяется в результате окисления углеводов или жиров. Вся система находится в состоянии динамического равновесия, при котором скорости образования и расщепления АТФ равны, так что внутриклеточные концентрации АТФ ( = 5 мМ ) и креатинфосфата ( = 30 мМ ) постоянны. При продолжительных спортивных нагрузках скорость расщепления АТФ в мышцах, от которой непосредственно зависит их мощность, часто в 100 или даже в 1000 раз больше, чем в состоянии покоя. Устойчивое состояние, а следовательно, и продолжительная нагрузка возможны, только если скорость ресинтеза АТФ в результате окислительного фосфорилирования возрастает параллельно его расходу. При этом потребление О2 мышечной тканью увеличивается в 50-100 раз по сравнению с состоянием покоя, потому что для образования 1 моля АТФ требуется примерно 1/6 моля О2. Соответственно повышается и скорость расщепления гликогена в мышце. Интенсивность ее работы может ограничиваться активностью митохондриальных ферментов, определяющей скорость окислительного расщепления глюкозы; эта активность достигает предела, на пример во время бега хорошо тренированного стайера со скоростью 6 м/с.
Предел, характерный для продолжительной работы, может быть превзойден при кратковременном усилии (например, при финальном спурте во время соревнований по бегу) за счет расщепления дополнительного количества гликогена анаэробным путем, т.е. посредством гликолиза. При этом АТФ образуется в 2-3 раза быстрее, а механическая энергия мышцы в 2-3 раза выше, чем при длительной работе, обеспечиваемой аэробными механизмами. Спринтер может бежать почти вдвое быстрее(10 м/с) стайера. Предельное время для такой повышенной нагрузки составляет примерно 30с из-за ограниченности ресурсов анаэробного метаболизма, необходимых для поддержания высокой скорости образования АТФ, а также вследствие накопления в клетке и крови молочной кислоты, образующейся при гидролизе АТФ. В конечном итоге развивается метаболический ацидоз, ограничивающий работоспособность и вызывающий утомление. Применение метода ядерного магнитного резонанса (ЯМР-спектроскопии) теперь позволяет проследить in situ за вязанными с утомлением изменениями внутриклеточного рН и накоплением таких метаболитов, как фосфат и АДФ в сердечной и скелетной мускулатуре. Анаэробные процессы необходимы для обеспечения энергией не только кратковременного экстремального усилия, но и в начале продолжительной мышечной работы, потому что адаптация скорости окисления (и гликолиза) к возросшей нагрузке требует некоторого времени. Равновесное состояние, когда путем окислительного фосфорилирования в единицу времени образуется столько же АТФ, сколько расщепляется АТФазой, наступает только через 0,5-2 мин (“второе дыхание”).
До достижения этого динамического равновесия АТФ ресинтезируется по реакции Ломана из АДФ и креатинфосфата со скоростью, позволяющей поддерживать внутриклеточный уровень АТФ практически постоянным:
АДФ + креатинфосфат = АТФ + креатин
В результате внутриклеточный уровень креатинфосфата падает до тех пор, пока скорость аэробного образования АТФ не вырастет настолько, что будет удовлетворять текущие потребности мышцы. Запас креатинфосфата обычно не пополняется до тех пор, пока не закончится сокращение и реакция Ломана не пойдет в обратном направлении; в первые минуты покоя, требуемый для этого АТФ, обеспечивается окислительным фосфорилированием, т. е. реакциями с потреблением О2. В результате покрывается кислородная задолженность (кислородный долг), которая приблизительно соответствует количеству энергии, полученному анаэробным путем в начале или во время работы мышцы и еще не компенсированному за счет аэробного синтеза АТФ. Кислородная задолженность, целиком обусловленная (анаэробным) гидролизом креатинфосфата, может достигать 4 л; образование энергии путем гликолиза во время предельного физического усилия способно увеличить ее до 20 л, поскольку для удаления образовавшейся и поступившей в кровь (до 1,5 г/л) молочной кислоты необходим О2. Часть лактата окисляется в миокарде, а некоторое его количество (преимущественно в печени) используется для синтеза гликогена.
Таким образом, для активной деятельности мышцы необходим постоянный ресинтез АТФ. Запас АТФ в скелетных мышцах невелик — всего примерно на 10 одиночных сокращений. Необходимый постоянный ресинтез АТФ осуществляется тремя путями.
1. Ресинтез АТФ за счет ферментативного переноса фосфатной группы от богатого энергией креатинфосфата на аденозиндифосфорную кислоту. Этот эффективный путь позволяет за несколько секунд совершить большую работу, которая выполняется, например, спринтером или штангистом. В случае интенсивной мышечной работы запасы креатинфосфата быстро истощаются и реализуются другие, более медленные способы пополнения АТФ.
2. Гликолитический путь, связанный с анаэробным расщеплением глюкозы до молочной кислоты. В результате образуются 2 молекулы АТФ на 1 молекулу глюкозы. Этот способ ресинтеза АТФ идет быстро, но накапливающаяся молочная кислота тормозит активность гликолитических ферментов. Этот вид энергопродукции используется при больших, но непродолжительных нагрузках, например при беге на средние дистанции, и способствует сдвигам кровообращения в работающей мышце для обеспечения адекватного хода третьего типа ресинтеза АТФ.
3. Аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершаемое в мито-хондриях. При этом экономичном процессе из 1 молекулы глюкозы образуется около 38 молекул АТФ, а при окислении 1 молекулы жирной кислоты — около 128 молекул АТФ. Для получения энергии таким способом требуется больше времени, чем при первых двух способах, поэтому 3-й путь ресинтеза АТФ используется во всех случаях, когда мощность сократительной активности мышцы невысокая. Отметим, что аэробное окисление глюкозы и жирных кислот (запасы свободной глюкозы, гликогена и жиров в мышцах достаточно велики) — наиболее типичный способ энергообеспечения скелетных мышц. Однако при длительной работе в организме накапливаются недоокисленные продукты (молочная кислота и др.). Создается кислородная задолженность. Такой долг погашается после работы за счет компенсатор-ной мобилизации кровообращения и дыхания (тахикардия, повышение кровяного давления, одышка). Если же работа, несмотря на наличие кислородного долга, продолжается, наступает выраженное состояние утомления, которое иногда прекращается за счет мобилизации дополнительных резервов кровообращения и дыхания («второе дыхание» спортсменов).
Do'stlaringiz bilan baham: |