Electric Motors and Drives This Page Intentionally Left Blank



Download 5,24 Mb.
Pdf ko'rish
bet53/97
Sana13.04.2022
Hajmi5,24 Mb.
#548362
1   ...   49   50   51   52   53   54   55   56   ...   97
Bog'liq
Electric Motors Drives

V
1
Flux,
ø
Time
ø
m
ø
m
Figure 7.4
Flux and voltage waveforms for ideal transformer operating with square-wave
primary voltage. (The voltage and frequency in
(b)
are doubled compared with
(a),
but the
peak
X
ux remains the same.)
242
Electric Motors and Drives


integrate equation (7.3) to obtain an expression for the
X
ux. The
X
ux is
then given by
f
¼ 
^
V
V
v
N
1
cos
v
t
¼
f
m
sin
v
t
p
2
(7
:
4)
where
f
m
¼
^
V
V
v
N
1
¼
^
V
V
2
p
fN
1
(7
:
5)
Typical primary voltage and
X
ux waves are shown in Figure 7.5. A special
feature of a sine function is that its di
V
erential (gradient) is basically the
same shape as the function itself, i.e. di
V
erentiating a sine yields a cosine,
which is simply a sine shifted by 90
8
; and similarly, as here, di
V
erentiating
a (
)cosine wave of
X
ux yields a sinewave of voltage.
Equation (7.5) shows that the amplitude of the
X
ux wave is propor-
tional to the applied voltage, and inversely proportional to the frequency.
As mentioned above, we normally aim to keep the peak
X
ux constant in
order to fully utilise the magnetic circuit, and this means that changes to
voltage or frequency must be done so that the ratio of voltage to frequency
is maintained. This is shown in Figure 7.5 where, to keep the peak
X
ux
(
w
m
) in Figure 7.5(a) the same when the frequency is doubled to that in
Applied voltage, 
V
1
Flux,
ø
ø
m
ø
m
(a)
(b)
Figure 7.5
Flux and voltage waveforms for ideal transformer operating with sinusoidal
primary voltage. (The voltage and frequency in
(b)
are doubled compared with
(a),
but the
peak
X
ux remains the same.)
Induction Motor Equivalent Circuit
243


Figure 7.5(b), the voltage must also be doubled. We drew the same
conclusion in relation to the induction motor in Chapters 5 and 6.
Although equation (7.5) was developed for an ideal transformer, it is
also applicable with very little error to the real transformer, and is in fact
a basic design equation. For example, suppose we have a transformer
core with a cross-sectional area 5 cm
5 cm, and we decide we want to
use it as a 240 V, 50 Hz mains transformer. How many turns will be
required on the primary winding?
We can assume that, as discussed in Chapter 1, the
X
ux density in the
core will have to be limited to say 1.4 T to avoid saturation. Hence the
peak
X
ux in the core is given by
f
m
¼
B
m
A
¼
1
:
4
0
:
05
0
:
05
¼
3
:
5
10
3
Wb
¼
3
:
5 m Wb
The peak voltage (
^
V
V
) is the r.m.s (240) multiplied by
ffiffiffi
2
p
; the frequency
(
f
) is 50, so we can substitute these together with
f
m
in equation (7.5) to
obtain the number of turns of the primary winding as
N
1
¼
240
ffiffiffi
2
p
2
p
50
3
:
5
10
3
¼
308
:
7 turns
We cannot have a fraction of a turn, so we choose 309 turns for the
primary winding. If we used fewer turns the
X
ux would be too high, and
if we used more, the core would be under-utilised.
The important message to take from this analysis is that under sinu-
soidal conditions at a
W
xed frequency, the
X
ux in a given transformer is
determined by the applied voltage. Interestingly, however, the only
assumption we have to make to arrive at this result is that the resistance
of the windings is zero: the argument so far is independent of the
magnetic circuit, so we must now see how the reluctance of the trans-
former core makes its presence felt.
We know that although the amplitude of the
X
ux waveform is deter-
mined by the applied voltage, frequency and turns, there will need to be
an MMF (i.e. a current in the primary winding) to drive the
X
ux around
the magnetic circuit: the magnetic Ohm’s law tells us that the MMF
required to drive
X
ux
w
around a magnetic circuit that has reluctance
R
is given by MMF
¼
R
w
.
But in this section we are studying an ideal transformer, so we can
assume that the magnetic circuit is made of in
W
nitely permeable mater-
ial, and therefore has zero reluctance. This means that no MMF is
required, so the current drawn from the supply (the ‘magnetising cur-
rent’,
I
m
) in the ideal transformer is zero.
244
Electric Motors and Drives


To sum up, the
X
ux in the ideal transformer is determined by the
applied voltage, and the no-load current is zero. This hypothetical
situation is never achieved in practice, but real transformers (especially
large ones) come close to it.
Viewed from the supply, the ideal transformer at no-load looks like an
open circuit, as it draws no current. We will see later that a real
transformer at no-load draws a small current, lagging the applied volt-
age by almost 90
8
, and that from the supply viewpoint it therefore has a
high inductive reactance, known for obvious reasons as the ‘magnetising
reactance’. An ideal transformer is thus seen to have an in
W
nite magnet-
ising reactance.
Ideal transformer – no-load condition, voltage ratio
We now consider the secondary winding to be restored, but leave it
disconnected from the load so that its current is zero, in which case it can
clearly have no in
X
uence on the
X
ux. Because the magnetic circuit is
perfect, none of the
X
ux set up by the primary winding leaks out, and all
of it therefore links the secondary winding. We can therefore apply
Faraday’s law and make use of equation (7.3) to obtain the secondary
induced e.m.f. as
E
2
¼
N
2
d
f
d
t
¼
N
2
V
1
N
1
¼
N
2
N
1
V
1
(7
:
6)
There is no secondary current, so there is no volt-drop across
R
2
and
therefore the secondary terminal voltage
V
2
is equal to the induced
e.m.f.
E
2
. Hence the voltage ratio is given by
V
1
V
2
¼
N
1
N
2
(7
:
7)
This equation shows that any desired secondary voltage can be obtained
simply by choosing the number of turns on the secondary winding. For
example, if we wish to obtain a secondary voltage of 28 V in the mains
transformer discussed in the previous section, the number of turns of the
secondary winding is given by
N
2
¼
V
2
V
1
N
1
¼
28
240
309
¼
36 turns
:
It is worth mentioning that equation (7.7) applies regardless of the
nature of the waveform, so if we apply a square wave voltage to the
Induction Motor Equivalent Circuit
245


primary, the secondary voltage would also be square wave with ampli-
tude scaled according to equation (7.7).
We will see later that when the transformer supplies a load the
primary and secondary currents are inversely proportional to their
respective voltages: so if the secondary voltage is lower than the primary
there will be fewer secondary turns but the current will be higher and
therefore the cross-sectional area of the wire used will be greater. The net
result is that the total volumes of copper in primary and secondary are
virtually the same, as is to be expected since they both handle the same
power.
Ideal transformer on load
We now consider what happens when we connect the secondary winding
to a load impedance
Z
2
. We have already seen that the
X
ux is determined
solely by the applied primary voltage, so when current
X
ows to the load
it can have no e
V
ect on the
X
ux, and hence because the secondary
winding resistance is zero, the secondary voltage remains as it was at
no-load, given by equation (7.7). (If the voltage were to change when we
connected the load we could be forgiven for beginning to doubt the
validity of the description ‘ideal’ for such a device!)
The current drawn by the load will be given by
I
2
¼
V
2
=
Z
2
, and
the secondary winding will therefore produce an MMF of
N
2
I
2
acting around the magnetic circuit. If this MMF went unchecked it
would tend to reduce the
X
ux in the core, but, as we have seen, the
X
ux is determined by the applied voltage, and cannot change. We
have also seen that because the core is made of ideal magnetic
material it has no reluctance, and therefore the resultant MMF (due
to both the primary winding and the secondary winding) is zero. These
two conditions are met by the primary winding drawing a current
such that the sum of the primary MMF and the secondary MMF
is zero, i.e.
N
1
I
1
þ
N
2
I
2
¼
0,
or
I
1
I
2
¼ 
N
2
N
1
(7
:
8)
In other words, as soon as the secondary current begins to
X
ow,
a primary current automatically springs up to neutralise the demagne-
tising e
V
ect of the secondary MMF.
The minus sign in equation (7.8) serves to remind us that primary and
secondary MMFs act in opposition. It has no real meaning until we
de
W
ne what we mean by the positive direction of winding the turns
246
Electric Motors and Drives


around the core, so because we are not concerned with transformer
manufacture we can a
V
ord to ignore it from now on.
The current ratio in equation (7.8) is seen to be the inverse of the
voltage ratio in equation (7.7). We could have obtained the current ratio
by a di
V
erent approach if we had argued from a power basis, by saying
that in an ideal transformer, the instantaneous input power and the
instantaneous output power must be equal. This would lead us to
conclude that
V
1
I
1
¼
V
2
I
2
, and hence from equation (7.7) that
V
1
V
2
¼
N
1
N
2
¼
I
2
I
1
(7
:
9)
To conclude our look at the ideal transformer, we should ask what the
primary winding of an ideal transformer ‘looks like’ when the secondary
is connected to a load impedance
Z
2
. As far as the primary supply is
concerned, the apparent impedance looking into the primary of the
transformer is simply the ratio
V
1
=
I
1
, which can be expressed in second-
ary terms as
V
1
I
1
¼
(
N
1
=
N
2
)
V
2
(
N
2
=
N
1
)
I
2
¼
N
1
N
2
2
V
2
I
2
¼
N
1
N
2
2
Z
2
¼
Z
0
2
(7
:
10)
So, when we connect an impedance
Z
2
to the secondary, it appears from
the primary side as if we have connected an impedance
Z
0
2
across the
primary terminals. This equivalence is summed-up diagrammatically in
Figure 7.6.
The ideal transformer e
V
ectively ‘scales’ the voltages by the turns ratio
and the currents by the inverse turns ratio, and from the point of view of
the input terminals, the ideal transformer and its secondary load (inside
the shaded area in Figure 7.6(a)) is indistinguishable from the circuit in
Figure 7.6(b), in which the impedance
Z
0
2
(known as the ‘referred’
impedance) is connected across the supply. We should note that when
we use referred impedances, the equivalent circuit of the ideal trans-
former simply reduces to a link between primary and referred secondary
circuits: this point has been stressed by showing the primary and sec-
ondary terminals in Figure 7.6, even though there is nothing between
them. We will make use of the idea of referring impedance from second-
ary to primary when we model the imperfections of the real transformer,
and then we will
W
nd that there are circuit elements between the input
(
V
1
) and output (
V
0
2
) terminals (Figure 7.10).
Finally, we should note that although both windings of an ideal
transformer have in
W
nite inductance, there is not even a vestige of
Induction Motor Equivalent Circuit
247


inductance in the equivalent circuit. This remarkable result is due to the
perfect magnetic coupling between the windings. As we will see shortly,
the real transformer can come very close to the ideal, but for reasons
that will also become apparent, ultimate perfection is not usually what
we seek.
THE REAL TRANSFORMER
We turn now to the real transformer, with the aim of developing
its equivalent circuit. Real transformers behave much like ideal ones
(except in very small sizes), and the approach is therefore to extend
the model of the real transformer to allow for the imperfections of the
real one.
For the sake of completeness we will establish the so-called ‘exact’
equivalent circuit
W
rst on a step-by-step basis. As its name implies the
exact circuit can be used to predict all aspects of transformer perform-
ance, but we will
W
nd that it looks rather fearsome, and is not well
adapted to o
V
ering simple insights into transformer behaviour. Fortu-
nately, given that we are not seeking great accuracy, we can retreat from
the complexity of the exact circuit and settle instead for the much less
daunting ‘approximate’ circuit which is more than adequate for yielding
answers to the questions we need to pursue, not only for the transformer
itself but also when we model the induction motor.
Real transformer – no-load condition, flux and
magnetising current
In modelling the real transformer at no-load we take account of the
W
nite resistances of the primary and secondary windings; the
W
nite
reluctance of the magnetic circuit; and the losses due to the pulsating
X
ux in the iron core.

Download 5,24 Mb.

Do'stlaringiz bilan baham:
1   ...   49   50   51   52   53   54   55   56   ...   97




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish