- Bu erda y(xk)=yk belgilash kiritsak
- uk+1=uk+ (2)
- Bu erda integral ostidagi funktsiyani [xk , xk+1] kesmada o’zgarmas x=xk nuqtada boshlang’ich qiymatga teng desak, Eyler formulasini hosil qilamiz:
-
- uk+1= yk+ yk , yk=hf(xk,yk) (3)
-
- Ushbu jarayonni [a,b] ga tegishli bo’lgan har bir kesmachada takrorlasak, (1) ni yechimini ifodalovchi jadvalni tuzamiz..
- Eyler usulini differensial tenglamalar tizimini yechishni ham qo’llash mumkin. Quyidagi sistema uchun boshlang’ich masala berilgan bo’lsin:
- x=x0 da u=u0, z=z0 (4)
- (4) ning taqribiy yechimlari quyidagi formulalar bilan topiladi
- ui+1=yi+ yi , zi+1=zi+ zi
- Bu erda
- ui=hf1(xi,yi,zi), zi=hf2(xi,yi,zi), (i==0,1,2,...)
- Misol. Eyler usuli bilan y’=y+(1+x)y2 , u(1)=-1 masalaning yechimi [1;1,5] kesmada h=0,1 qadam bilan topilsin.
Yechish. Masalani shartidan x0=1, u0=-1 topamiz va (7.4.3) Eyler formulasidan quyidagi jadvalni tuzamiz. - Yechish. Masalani shartidan x0=1, u0=-1 topamiz va (7.4.3) Eyler formulasidan quyidagi jadvalni tuzamiz.
I
|
xi
|
yi
|
f(xi ,yi)
|
Aniq yechim
|
0
|
1
|
-1
|
1
|
-1
|
1
|
1,1
|
-0,9
|
0,801
|
-0,909091
|
2
|
1,2
|
-0,8199
|
0,659019
|
-0,833333
|
3
|
1,3
|
-0,753998
|
0,553582
|
-0,769231
|
4
|
1,4
|
-0,698640
|
0,472794
|
-0,714286
|
5
|
1,5
|
-0,651361
|
|
-0,666667
| Jadvaldan taqribiy yechim va aniq yechim orasidagi farqlarni xam ko’rishimiz mumkin. - Jadvaldan taqribiy yechim va aniq yechim orasidagi farqlarni xam ko’rishimiz mumkin.
- Bu usulni takomillashtirilgan ko’rinishlaridan biri Eyler-Koshi usulidir. Eyler-Koshi usuli yordamida esa taqribiy yechimlar quyidagi formulalar orqali xisoblanadi:
-
- bu erda
- =
-
Runge – Kutta usuli - Runge – Kutta usuli ko’p jixatdan Eyler usuliga o’xshash, ammo aniqlik darajasi Eyler usuliga nisbatan yuqori bo’lgan usullardan biridir. Runge – Kutta usuli bilan amaliy masalalarni yechish juda qulay. Buning sababi, bu usul orqali noma’lum funktsiyani xi+1 dagi qiymatini topish uchun uning xi dagi qiymati aniq bo’lishi etarli.
- Runge – Kutta usulini uning aniqlash darajasi bo’yicha bir nyecha usullarga ajratadilar. Shulardan amaliyotda eng ko’p qo’llanadigani to’rtinchi darajali aniqlikdagi Runge – Kutta usulidir.
- Birinchi tartibli differensial tenglama y’=f(x,y) uchun x=xi da y=yi (i=0,1,2, ...n) qiymatlar ma’lum bo’lsin. Bu erda “ui” boshlang’ich shart ma’nosida bo’lmasligi ham mumkin.
Tenglamaning yechimi qidirilayotgan kesma [a,b], xi=x0+ih (i=0,1,2,...n) nuqtalar bilan bir-biriga teng “n” ta bo’lakka bo’lingan. - Tenglamaning yechimi qidirilayotgan kesma [a,b], xi=x0+ih (i=0,1,2,...n) nuqtalar bilan bir-biriga teng “n” ta bo’lakka bo’lingan.
- Noma’lum funktsiya “u” ni x=xi+1 dagi qiymati yi+1= y(xi+1) ni topish uchun quyidagi ketma-ket hisoblash jarayonini amalga oshirmoq lozim bo’ladi:
Do'stlaringiz bilan baham: |