Darajali qatorning yaqinlashish radiusi va yaqinlashish doirasi.
Teorema 2. Agar (1) darajali qator z ning ba’zi qiymatlarida yaqinlashuvchi, ba’zi qiymatlarida uzoqlashuvchi bo’lsa, u holda shunday yagona R (R>0) son topiladiki (1) qator
doirada yaqinlashuvchi,
sohada esa uzoqlashuvchi bo’ladi.
Isbot: (Mustaqil)
Ta’rif 2. Agar (1) darajali qator da yaqinlashuvchi, da uzoqlashuvchi bo’lsa, R son (1) darajali qatorning yaqinlashish radiusi, doira esa (1) darajali qatorning yaqinlashish doirasi deyiladi.
E s l a t m a. (1) darajali qator
aylana nuqta arida yaqinlashuvchi ham bo’lishi mumkin, uzoqlashuvchi ham bo’lishi mumkin.
Teorema 3. (Koshi–Adamar teoremasi)
Berilgan
darajali qatorning yaqinlashish radiusi
(4)
bo’ladi.
(4) da l=0 bo’lganda R=+ , l =+ bo’lganda esa R=0 deb olinadi.
Do'stlaringiz bilan baham: |